SAET - Eng. Edu. Division (SEED)
On November 9, 2018, NJIT launched its newest school, the School of Applied Engineering and Technology (SAET), within the university’s Newark College of Engineering (NCE). SAET encompasses NCE’s applied programs in four divisions: the Electrical and Mechanical Engineering Technology Division (SEMD), the Built Environment Division (SBED), the Engineering Education Division (SEED), and the Biomedical & Life Sciences Division (SBLD). SAET serves about 1,000 NJIT students. The Engineering Education Division (SEED) offers graduate programs in Engineering Science (ESC). ESC graduate program provides students with an opportunity to design their plan of study to fit specific educational and career objectives. There are opportunities for multidisciplinary, interdisciplinary, and transdisciplinary study. The focus is on applied work with programs informed by the needs of industry, education, and government organizations. SEED offers a Master of Science (MS) as well as a doctoral degree (PhD) in ESC.
Master of Science in Engineering Science
The Master of Science (M.S.) in Engineering Science allows students to customize an M.S. to align with their academic and professional pursuits. Working with an advisor students can select graduate courses from different colleges at NJIT. A number of applied areas of study could be pursued. The Engineering Education Concentration is an example of a developed area of study.
Admission Requirements
Applicants are expected to have an accredited undergraduate degree in science or engineering. Candidates with other appropriate backgrounds may be considered.
Doctor of Philosophy in Engineering Science
The Doctor of Philosophy (Ph.D.) degree program compliments the existing M.S. in Engineering Science. The focus remains on applied work with graduate study informed by the needs of industry, education, and government organizations. This applied research area involves identifying a real-world problem in a field, researching it thoroughly, and developing new comprehension towards novel solutions. This program is also in alignment with NJIT’s Collaborative Doctorate Program (Collaborative doctorate program).
Admission Requirements
Applicants are expected to have a master's degree from an accredited institution in science or engineering. Candidates with other appropriate backgrounds may be considered.
ESC 601. Fundamentals of Geomatics Engineering. 3 credits, 3 contact hours.
Prerequisites: Fundamental knowledge of calculus, MATH 111 or MATH 138 or equivalent. Restrictions: Graduate Standing or Approval from the Course Instructor. Covers basic knowledge of spatial reference systems and geodetic coordinates. Examines the first fundamental form and theory of distortion in map projection with application to conformal mapping within state plane coordinate systems. Introduction of the geopotential model and computational methods for geodetic positioning, physical and geometric heights, and gravity anomalies to quantify crustal movement and change detection. Examines geomatics engineering methodologies for sustainable development and risk mitigation through case studies.
ESC 603. Artificial Intelligence for Geospatial Decisions. 3 credits, 3 contact hours.
Prerequisites: Fundamental knowledge of statistics MATH 105 or equivalent and computer programming CS 106 or equivalent. Restrictions: Graduate Standing or Approval from the Course Instructor. Statistical learning theory with a focus on artificial intelligence (AI) for geospatial data. Two perspectives through machine learning include supervised and unsupervised learning of geospatial patterns. Course outcomes include knowledge and skills necessary to investigate patterns in geospatial data to support decision-making within the context of engineering and geoscience disciplines.
ESC 690. Graduate Co-op Work Experience in Engineering Science. 3 credits, 3 contact hours.
Prerequisites: Must have completed 18 credits of graduate course work. Restrictions: Approval of the departmental co-op advisor and the Division of Career Development Services. This cooperative educational opportunity allows students to engage in experiential learning with industry to develop an applied industry-oriented research proposal. The course will follow the requirements outlined by NJIT's Division of Career Development Services and the School of Applied Engineering and Technology.
Students must have completed 18 credits of graduate course work prior to the commencement of the co-op. Approval of departmental co-op advisor and the Division of Career Development Services is required for registration.
ESC 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in engineering science that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ESC 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply). Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Conduct of Research) course.
ESC 701C. Master's Thesis. 6 credits, 6 contact hours.
Restrictions: Approval of the thesis advisor is required for registration.
ESC 702. Special Topics in Engineering Science. 3 credits, 3 contact hours.
Restrictions: Advisor's approval, Graduate standing. This course will cover special interest topics in applied engineering and science. This includes interdisciplinary and multidisciplinary graduate-level areas in the applied field.
ESC 705. Advances in Engineering Education Research. 3 credits, 3 contact hours.
For PhD students in an engineering program. For master’s students, approval from Instructor/Course Coordinator (to confirm completion of core courses in the program). This course prepares students to apply theoretical work and research methodologies from the field of education to improve teaching of engineering students. Students will be able to conduct assessment and translate research findings into classroom and instructional methods. Topics include learning theories and conceptual frameworks, research design, qualitative and quantitative data collection and analysis, assessment and accreditation in engineering, student-centered instructional design and development of teaching statements.
ESC 725. Independent Study I. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.
ESC 726. Independent Study II. 3 credits, 3 contact hours.
Approvals of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.