Biological Sciences

NJIT’s Department of Biological Sciences is federated with Rutgers University-Newark, an affiliation that offers comprehensive opportunities for study and research, with diplomas issued jointly by NJIT and Rutgers. Students thus benefit from the best of both universities. NJIT emphasizes the quantitative and technical aspects of biology, while the focus at Rutgers is on the cellular and molecular aspects of biology, as well as ecology and evolution. Ample opportunities to participate in research at the undergraduate and graduate levels include neural-network function, neuro-immunology, waves and diffusion of ions in the brain, respiratory physiology, population dynamics, and global climate and ecosystem change.

NJIT Faculty

B
Bucher, Dirk M., Associate Professor
Bunker, Daniel E., Assistant Professor

F
Flammang-Lockyer, Brooke E., University Lecturer
Fortune, Eric S., Associate Professor

G
Garnier, Simon J., Assistant Professor
Golowasch, Jorge P., Professor

H
Haspel, Gal, Assistant Professor

N
Nadim, Farzan, Professor

R
Russell, Gareth J., Associate Professor

S
Soares, Daphne F., Assistant Professor
Stanko, Maria L., University Lecturer

T
Trimby, Christopher M., University Lecturer

W
Wisner, Ellen M., University Lecturer

Y
Yarotsky, John J., University Lecturer

Programs

Accelerated Programs (http://catalog.njit.edu/undergraduate/academic-policies-procedures/special-degree-options)

Biological Sciences Courses

Biol 200. Concepts in Biology. 4 credits, 4 contact hours (4;0;0).
Prerequisites: MATH 107 or MATH 108 or Co-requisites: MATH 110, or MATH 111 or MATH 138. This course will introduce student to the study of biology at the beginning of their course of study. Central ideas in the biological sciences will be highlighted, with an emphasis on the process of scientific discovery and investigation. The course will provide the basis for more advanced coursework and learning experiences in the biological sciences as students delve into the curriculum of study.

Biol 201. Foundation of Biol: Cell & Molecula. 3 credits, 3 contact hours (3;0;0).
Prerequisites: BIOL 200 or R120 200 and CHEM 121 or CHEM 125. This course will expose students to an in-depth examination of the structure and function of cells; methods of study; thermodynamics and metabolism; membrane biology, energy utilization and transfer; protein and nucleic acid structure and function; transcription, translation, and genetic regulation. The laboratory course BIOL 202 must be taken concurrently, although they are separate courses.

Biol 202. Foundation of Biol: Cell & Molecula. 1 credit, 3 contact hours (0;3;0).
Prerequisites: BIOL 200 or R120 200 and CHEM 121 or CHEM 125 and co-requisite BIOL 201. This course is a complement to the corresponding lecture course BIOL 201. The laboratory course will give students the opportunity to apply, in an experimental setting, the concepts that they are exploring in the accompanying lecture course and will offer them a hands-on experience that will enhance their learning of the Cellular and Molecular Biology content. Both courses (BIOL 201 and BIOL 202) must be taken concurrently.

Biol 205. Foundations of Biology: Ecology and Evolution Lecture. 3 credits, 3 contact hours (3;0;0).
Prerequisite: BIOL 200 with a C or better, co-requisite BIOL 206. This introductory course considers the population level of biological organizations. Topics include Mendelian and population genetics, evolution, and ecology of populations and communities.

Biol 206. Foundations of Biology: Ecology and Evolution Lab. 1 credit, 3 contact hours (0;3;0).
Prerequisite: BIOL 200 with a C or better, Co-requisite BIOL 205. The laboratory reinforces the topics covered in Foundations of Ecology and Evolution Lecture (Biol 205) lecture with hands-on activities and exposes students to current methods of research and analysis in these areas.

Biol 222. Evolution. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This course will provide a comprehensive introduction to the field of evolutionary biology. Topics will include: the development of evolutionary theory, the history of the evolution of life on Earth, the genetic basis of variation and heredity, natural selection, evolution and development, and speciation.

Biol 225. Insects and Human Society. 3 credits, 3 contact hours (3;0;0).
Prerequisites: R120 101 and R120 102 (General Biology sequence). This course, through lecture and discussion, will cover the breadth of influence insects have on society, from the provision of ecosystem services to the economic and social costs associated with their role as vectors of disease. Students will learn how insects are used in science, agriculture and indicators of global climate change and water quality. Students will also learn some insect biology and have the opportunity to observe insects (living and dead) to gain a better understanding of the diversity and complexity of these creatures.

Biol 250. Biology of Neotropical Habitats: Ecuador and Galapagos Islands. 3 credits, 4 contact hours (2;2;0).
This course is an introduction to tropical biology and evolution held in Ecuador’s Highlands, Rain Forest, and in the Galapagos islands. The course uses a hands-on approach to study the flora and fauna of these unique habitats. The course also addresses the history, politics, and culture of Ecuador, with emphasis on how these issues influence the management and sustainability of Ecuadorian natural resources.
BIOL 310. Work Experience I. 3 credits, 3 contact hours (0;0;3).
Prerequisites: Departmental approval and permission of the Office of Cooperative Education and Internships. Students gain major-related work experience and reinforcement of their academic program. Work assignments facilitated and approved by the co-op office. Mandatory participation in seminars and completion of a report. Note: Normal grading applies to this COOP Experience.

BIOL 315. Principles of Neurobiology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This course will review neuroscience concepts at a basic level. It will cover basics of cellular physiology, molecular biology and developmental biology of nerve cells, network physiology, behavior, cognition and memory and learning. This course will prepare students who are interested in a neuroscience sequence for their major.

BIOL 320. Discovering Biological Research. 3 credits, 3 contact hours (3;0;0).
Prerequisites: BIOL 102, (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. Success in the constantly evolving field of biology necessitates staying current in scientific literature. This requires competency in skills such as analysis of primary sources, synthesis of information from multiple sources, and oral and written communication skills. This course focuses on these competencies. Students will develop skills need to read and analyze scientific literature, and to communicate science. Each semester the content theme of the course will change depending on the expertise of the faculty member teaching the course.

BIOL 321. Comp Vertebrate Anatomy. 4 credits, 6 contact hours (3;3;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) and (PHYS 102 and PHYS 102A or PHYS 111 and PHYS 111A) with grade of C or better. This course introduces students to the groups of vertebrates and explores the anatomical evolution of vertebrates within the context of the functional interrelationships of organs and the changing environments to which vertebrates have adapted. An ideal entry point into the ways living creatures interact with their immediate physical world, we examine how the forms and activities of animals reflect the materials available to nature and consider rules for structural design under environmental forces.

BIOL 337. Collective Intel in Biol Syst. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This course will provide an overview of the fundamental principles underlying the organization of animal and human societies. It will include detailed consideration of behavioral, social, and physical processes that are responsible for the coordination of activities in large animal and human groups and social.

BIOL 338. Ecology of the Dining Hall. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This course will use the examination of an on-campus ecosystem, the dining hall, as a framework for learning about a number of applied ecological concepts. We will investigate topics such as food webs, nutrient cycling, microbial ecology, and agroecology as they apply to the organisms and biological processes, present in our dining hall. Course work will involve extensive reading and discussion of scientific and popular literature, supplemented by regular class trips to the dining hall and related on-campus facilities.

BIOL 340. Mammalian Physiology. 4 credits, 6 contact hours (3;3;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This course will review general principles of the function of the human body as a mammal, with emphasis on the function and regulation of neuromuscular, cardiovascular, respiratory, endocrine, digestive, and excretory systems. The goal is to provide students with the basic knowledge to understand how their own bodies operate.

BIOL 341. Introduction to Neurophysiology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: R120 201 and R120 202 with a grade of C or better. This course will examine the physiology of neurons such as excitability, impulse conduction, synaptic communication and neural and synaptic plasticity. The objective is to provide students with a basic understanding of neural signaling and communication.

BIOL 342. Developmental Biology (Embryology). 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. Descriptive and experimental approaches to molecular, cellular and organismal changes during embryonic development; mechanisms of cell differentiation, organogenesis, morphogenesis, and pattern formation.

BIOL 344. Physiological Mechanisms. 3 credits, 3 contact hours (3;0;0).
Prerequisites: BIOL 340 or R120 340 with a grade of C or better. This course will utilize clinical (pathological) case studies to reinforce physiologic knowledge and provide students a strong basis for future studies in biomedical and health related fields.

BIOL 345. Comparative Physiology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: BIOL 340 or R120 340 or (R120 141 and R120 142) with grades of C or better. We will use a comparative approach to examine the physiology of animals including major physiological systems, with an emphasis on vertebrates. Topics to be covered include metabolic, temperature, osmotic and ionic regulation; respiration and circulatory transport, digestive, muscle, nervous, and locomotor systems; endocrine regulation and biological rhythms. We will further examine how physiological systems are integrated and thus allow animals to respond, physiologically, in different environment.
BIOL 347. Lab Approaches in Neuroscience. 4 credits, 6 contact hours (3;3;0).
Prerequisite: BIOL 315 Students will perform neurophysiological experiments, including assembling neurophysiological equipment, preparing neural tissues, selecting and presenting stimuli, recording, analyzing, and interpreting data. Students will perform experiments of increasing technical complexity. Each will reinforce theoretical and practical concepts related to the amplification and sampling of biopotentials. A lecture part will prepare the students for the concepts relevant to the lab day, and a data discussion meeting will aid the students in analyzing and presenting the data.

BIOL 350. Immunology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. The objective of this course is to facilitate an understanding of preliminary knowledge of the immune system in humans and other mammals. Students will be able to translate a basic understanding of the immune system and how that knowledge translates to further understanding medicine, research topics in cell biology, and broad topics in public health policy.

BIOL 352. Genetics. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better.

BIOL 368. The Ecology and Evolution of Disease. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) and (MATH 111 or MATH 238) with grade of C or better. This course addresses those aspects of ecology and evolutionary biology most relevant to understanding the origin, dynamics and treatment of disease (both infectious and hereditary/genetic). The class will be a mixture of lecture and discussion of case studies. Material covered will include biology, mathematical models, and some aspects of human behavior.

BIOL 375. Conservation Biology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This course will provide a comprehensive introduction to the field of conservation biology, as well as philosophical and economic concerns.

BIOL 382. Animal Behavior. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 205 and BIOL 206 or R120 205 and R120 206) and (BIOL 201 and BIOL 202 or R120 201 and R120 202). The objective of this course is to expose students to the broad field of animal behavior. The course will include the historical underpinnings of the field as well as the contemporary theories for a wide variety of behaviors. Behavioral ecology and the evolution of animal behaviors as adaptations will be intertwined throughout the course, as well potential applications of knowledge about animal behavior. Students will be able to analyze existing evidence and investigate modern practices in order to evaluate existing theories and consider potential future directions of animal behavior. Using current scientific literature, as well as case-studies, students will be able to come up with their own hypotheses and determine how different hypotheses related to animal behavior can be tested experimentally. Students will also gain hands-on experience in trying out some of the fundamental techniques.

BIOL 383. Neural Basis of Behavior. 3 credits, 3 contact hours (3;0;0).
Prerequisite (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. This lecture course explores the neural mechanisms underlying animal behavior. This course is intended for upper-level undergraduate students who have some background in biology, hence the prerequisite for Foundation of Biology. This courses would also be of interest to graduate students interested in neuroscience, such as, students in the Quantitative Neuroscience (QNS) program, students in the Integrative Neuroscience (INS) program, and students at the Center for Molecular and Behavioral Neuroscience (CMB). It is unnecessary for the students to have taken animal behavior or neurobiology; however, these courses would be helpful.

BIOL 385. Evolution of Animal Behavior Laboratory. 3 credits, 4 contact hours (2;2;0).
Prerequisites: (BIOL 201 and BIOL 202 or R120 201 and R120 202) and (BIOL 205 and BIOL 206 or R120 205 and R120 206) with grade of C or better. A lab course focusing on research in Animal Behavior. This course will cover foraging, predator avoidance, territoriality, and mate choice. Labs will be inquiry based with students designing experiments to test hypotheses concerning aspects of animal behavior.

BIOL 398. Visualizing Biology. 3 credits, 3 contact hours (3;0;0).
Prerequisite: Junior standing. This course aims to explore points of intersection between art and Biology. We will first explore important concepts of Biology in a lecture format with readings, based on popular science. Teams of students will develop a product based on their biologival driven interests and artistic toolkits. Regular individualized meetings will be held between the instructor and each team. A written essay on the creative process and scientific significance of the selected topic will accompany the creative work. A final showcase of the products will be held at the end of the semester.

BIOL 400. Biology in Science Fiction. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (R120 340 or BIOL 340 or R120 345 or BIOL 345) and (R120 355 or R120 356 or BIOL 352 or R120 352). Popular science fiction media will be utilized to initiate thinking critically and creatively about the biological sciences; from the molecular level to whole organism physiology. Students will explore the potential biology of fictitious organisms, and determine real-life analogues. These topics will be used as a vehicle to improve scientific writing and to apply biological knowledge in a new and unique way.

BIOL 410. Work Experience II. 3 credits, 3 contact hours (0;0;3).
Prerequisite: BIOL 310. Restriction: departmental approval and permission of the Office of Cooperative Education and Internships. Students gain major-related work experience and reinforcement of their academic program. Work assignments facilitated and approved by the co-op office. Mandatory participation in seminars and completion of a report. Note: Normal grading applies to this COOP Experience.
Biology

Biology 432. Intro to Comp Neuroscience. 3 credits, 3 contact hours (3;0;0).
Prerequisites: MATH 222; BIOL 315; BNFO 135 or CS101 or CS100 or CS115 (grade C or better in all prerequisites), or permission by instructor. Introduction to the modeling, computational and analysis techniques for single neurons and small neuronal networks. This course will approach cellular and small network neuroscience beginning with a review and understanding of outstanding problems in neuroscience. The course work will then focus on students developing an independent modeling/computational project around which neuroscience concepts will be discussed. The required knowledge of electric circuits and numerical tools for the solution of differential equations will be introduced as needed.

Biology 436. Advanced Neuroscience Modeling. 3 credits, 3 contact hours (3;0;0).
Prerequisites: BIOL 432 or MATH 430 or permission by instructor. Modeling and computational analysis of biological neuronal networks. The course consists of lectures, and scientific paper presentations aimed at acquiring a clear understanding of the biological issues in systems neuroscience. Students will work on developing an independent modeling/computational project during the duration of the semester around which biological topics will be discussed.

Biology 440. Cell Biology of Disease: Cells gone Bad!. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 340 or R120 340) and (R120 355 or R120 356) with a grade of C or better. This course will briefly review the normal physiology of mammals and humans and will then extensively explore the basis of many human diseases at the cellular level. The goal is to understand how alterations in normal functions of cells affect the function of the whole system by reviewing current research in the field of cell biology abnormalities.

Biology 445. Endocrinology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: (BIOL 340 or R120 340) and (R120 355 or R120 356) with a grade of C or better. This course will discuss endocrinology from both an anatomical and physiologic view. We will discuss synthesis, distribution and regulation of the entire human endocrine system. The goal is to provide students with a basic knowledge of the complex endocrine system.

Biology 447. Systems Neurobiology. 3 credits, 3 contact hours (3;0;0).
Prerequisite: BIOL 315 with a grade of C or better. This course will examine, from a systems perspective, phenomena that relate to neuronal network activity and behavior. Neuronal systems will be studied in detail. The overall goal of the course is to provide students with the basic knowledge of the neurobiological basis of behavior.

Biology 448. Neuropathophysiology: Nervous System Gone Bad!. 3 credits, 3 contact hours (3;0;0).
Prerequisites: BIOL 315 or BIOL 340 or R120 340 or BIOL 341 or R120 444 or BIOL 447 with a grade of C or better. This course will briefly examine the normal physiology of the nervous system and then would extensively explore the basis of many neuronal diseases. The goal is to understand how any alteration in normal functions of the nervous system affects the function of the whole system by reviewing current research in the field of nervous system abnormalities.

Biology 451. Cell Physiology and Imaging. 4 credits, 4 contact hours (1;3;0).
Prerequisites: PHYS 111, PHYS 121 and R120 455. This course will examine cellular phenomena, such as subcellular structure, secretion, intracellular calcium regulation, etc., from a physiological perspective and using imaging techniques as a tool to understand them. Cell biology, and optics and the user of microscopes, will be discussed in detail.

Biology 453. Applied Genetics & Genomics. 3 credits, 4 contact hours (3;1;0).
Prerequisites: BIOL 352 or R120 352. This is an advanced course in modern genetics and genomics. It offers students a class that presents a modern understanding of Genetic and genomic applications, given the ongoing explosion of technological developments in this field. An understanding of state-of-the-art genetics and genomics is indispensable for continuing education in fields that include but are not limited to: cell and molecular biology, clinical lab science, bio-mechanical engineering, biotechnology, agriculture, and medicine.

Biology 462. Comparative Biomechanics. 3 credits, 3 contact hours (3;0;0).
Prerequisites: R120 201, R120 202, BIOL 205 and BIOL 206 all with a C or better. This course takes a comprehensive look at the mechanical aspects of life. We will examine how the forms and activities of animals and plants reflect the materials available to nature, consider rules for fluid flow and structural design, and explore how organisms contend with environmental forces. Drawing on physics, we look at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, the relationship between size and mechanical design, and the links between the properties of biological materials (eg spider silk, jellyfish jelly, and muscle) and their structural and functional roles.

Biology 470. Dynamic Princ in Systems BIOL. 3 credits, 3 contact hours (3;0;0).
Prerequisites: MATH 222, and BNFO 135 or CS100 or CS115 grade C or better, or permission by instructor. Introduction to the dynamic and computational modeling of biological systems, including chemical, biochemical, metabolic and genetic networks. The course includes the description of basic principles and case studies and provides the necessary mathematical and computational tools to understand the mechanisms underlying the dynamics of this type of networks. The necessary knowledge on the biology will be introduced during the course.

Biology 475. Ecological Field Methods and Analysis. 3 credits, 3 contact hours (3;0;0).
Prerequisites: R120 280 or R120 370 with a C or better and permission of instructor. This field-orientated class will study animal and plant communities using a combination of field, laboratory and theory work. The goal of this course is to understand ecological principles and to introduce students to modern methodology for field work, the techniques and instruments used, as well as the theoretical basis for their application. Students will collect data, analyze them and report the results in written and oral format.

Biology 491. Research and Independent Study. 3 credits, 3 contact hours (0;0;3).
Restriction: Departmental approval required. Research in Biology. Each student works under the supervision of a Biology or associated faculty member. A research paper and poster are required.
BIOL 492. Research and Independent Study. 3 credits, 3 contact hours (0;0;3).
Restriction: Departmental approval required. Research in Biology. Each student works under the supervision of a Biology or associated faculty member.

BIOL 495. Honors Seminar in Biology. 3 credits, 3 contact hours (3;0;0).
Prerequisite: BIOL 320 with a grade of C or better. The honors seminar allows students the opportunity to work closely with an instructor in a specific area of the instructor's expertise. Students will be required to bring together interests and skills developed in previous courses. Students make in-depth oral and written presentations. This course satisfies NJIT's Honors Capstone requirement.

BIOL 498. Special Topics in Biology. 3 credits, 3 contact hours (3;0;0).
Prerequisites: Permission by instructor. This course explores a special topic in biology.

Rutgers-Newark Courses

100-level courses do not apply to biology majors
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>R120 101</td>
<td>General Biology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 101L</td>
<td>General Biology I</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R120 102</td>
<td>General Biology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 102L</td>
<td>General Biology II-Lecture</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R120 104</td>
<td>Human Health & Disease</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 105</td>
<td>Environ Issues</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 106</td>
<td>General Horticulture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 107</td>
<td>Horticulture Lab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R120 108</td>
<td>Human Sexuality</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 109</td>
<td>Basic Plant Science</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 110</td>
<td>Basic Plant Sci Lab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R120 111</td>
<td>Human Biology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 141</td>
<td>Anatomy & Physiology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 142</td>
<td>Anatomy & Physiology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 171</td>
<td>Human Ecology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 201</td>
<td>Foundations Of Biology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 202</td>
<td>Foundations Of Biology Lab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R120 203</td>
<td>Plant Bio</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 204</td>
<td>Economic Botany</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 205</td>
<td>Environmental Issues</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 206</td>
<td>General Horticulture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 207</td>
<td>Horticulture Lab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R120 208</td>
<td>Human Sexuality</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 211</td>
<td>Plant Kingdom</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 214</td>
<td>Microbiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 222</td>
<td>Evolution</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 227</td>
<td>Biol Invertebrates</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 230</td>
<td>Biology Of Seed Plants</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 235</td>
<td>Microbiology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 237</td>
<td>Environmental Microbiology</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>R120 240</td>
<td>Human Physiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 241</td>
<td>Anatomy & Physiology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 242</td>
<td>Anatomy & Physiology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 245</td>
<td>Pathophysiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 280</td>
<td>Ecology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 282</td>
<td>Animal Behavior</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 285</td>
<td>Comparative Vertebrate Anatomy</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 303</td>
<td>Molecular Biology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 305</td>
<td>Vertebrate Evolution</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 311</td>
<td>Flora of New Jersey</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 313</td>
<td>Mycology</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 320</td>
<td>Comp Vert Anatomy</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 322</td>
<td>Evolution</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>R120 323</td>
<td>Developmental Psychology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 325</td>
<td>Animal Parasites</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R120 326</td>
<td>Parasitology Lab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R120 327</td>
<td>Biol Invertebrates</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>R120 328</td>
<td>Ornithology</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>