SAET - Built Env. Division (SBED)

On November 9, 2018, NJIT launched its newest school, the School of Applied Engineering and Technology (SAET), within the university’s Newark College of Engineering (NCE). SAET encompasses NCE’s engineering technology programs in two divisions (Electrical and Mechanical Engineering Technology Division and the Built Environment Division); the baccalaureate degree General Engineering program; and a division focused on Engineering Education practice and research. SAET serves about 1,000 NJIT students. The SAET offers Bachelor of Science in Engineering Technology (BSET) degrees in nine different options, as well as, Bachelor of Science (BS) degrees in Concrete Industry Management (CIM), and General Engineering.

The Built Environment Division (SBED) consists of the Construction Engineering Technology (CET), Construction Management Technology (CMT), Concrete Industry Management (CIM), and Surveying Engineering Technology (SET) programs.

The options in Construction Engineering Technology and Surveying Engineering Technology are accredited by the Engineering Technology Accreditation Commission (ETAC of ABET) http://abet.org (http://abet.org/)

Many students choose to complete their freshman and sophomore years at a community college or a technical institute, and obtain an associate’s degree in applied science from these institutions. It is strongly recommended that students talk to an academic advisor at NJIT while they are still pursuing their associate’s degree. The academic advisor will explain the transfer process in detail as well as suggest elective courses that may be beneficial. Contact an advisor by calling the School of Applied Engineering and Technology at (973) 596-3228, or by email at EngineeringTechnology@njit.edu.

After being admitted to NJIT, students must meet with an academic advisor to discuss the curriculum and any special interests the student might have. Students who lack necessary courses will be assigned bridge courses to make up the required prerequisites. Generally, courses taken at the freshman and sophomore level at the community colleges cannot substitute for junior or senior NJIT engineering technology courses. Engineering technology is that part of the technological field which requires the application of scientific and engineering knowledge and methods, combined with technical skills, for the implementation and extension of existing technologies. Engineering technology education focuses on preparing engineering technologists for positions that involve product development and improvement, system development, management, manufacturing and engineering operational functions. Graduates also enter the technical sales and customer services field, or continue in graduate work in engineering or management. Placement of graduates has been excellent.

NJIT Faculty

Barnes, William, Associate Professor

Brateris, Daniel J., University Lecturer

English, Robert, Professor Emeritus

Juliano, Thomas, Associate Professor

Khader, Michael, Associate Professor

Lieber, Samuel C., University Lecturer

Mahgoub, Mohamed A., Assistant Professor

Miima, John B., Assistant Professor

Potts, Laramie, Associate Professor

Rabie, Mohammad A., University Lecturer
Programs

- Concrete Industry Management (CIM) - B.S. (http://catalog.njit.edu/undergraduate/newark-college-engineering/saet-sbed/concrete-industry-management-technology/)

CET 233. Structural Analysis in Construction. 3 credits, 3 contact hours (3:0:0).
Prerequisite: MET 237. This course will cover the aspects of the design and construction of structural steel and reinforced concrete for construction engineering technology students. This will include the design of beams, slabs and columns as well review of the connection of these structural members as encountered in practice.

CET 313. Construction Procedures I. 3 credits, 3 contact hours (3:0:0).
Corequisite: CET 317. An introduction to heavy construction practices. Emphasis is on construction equipment, site preparation, earthmoving, compaction, dewatering, piles, drilling and blasting, and tunnelling. Case studies in heavy construction are used.

CET 314. Construction Procedures II. 3 credits, 3 contact hours (3:0:0).
Prerequisites: CET 313, CET 317. An introduction to building construction practices and building materials. Emphasis is on structural systems, construction materials and detailed finishing operations required to make a serviceable structure. Case studies in building construction are used.

CET 317. Construction Computing. 3 credits, 3 contact hours (3:0:0).
Prerequisites: CS 106 Application of available software to construction-related computing problems, including: strength of materials, structural analysis, fluids/ hydraulics, surveying, scheduling, cost estimating, and computerized drafting (CAD).

CET 322. Construction Codes and Regulations. 3 credits, 3 contact hours (3:0:0).
An introduction to the New Jersey Uniform Construction Code, the BOCA National Building Code, NJ DOT Standard Specifications and the CSI specification format. A code analysis of a typical construction project is undertaken.

CET 323. Construction Safety. 3 credits, 3 contact hours (3:0:0).
Prerequisites: CET 313 and CET 314 This course will address the safety issues encountered in construction as mandated by the Occupational Safety and Health Act (OSHA)and other similar regulations.

CET 331. Structural Systems. 3 credits, 3 contact hours (3:0:0).
Prerequisite: CET 233. Study of types and behavior of modern structures using both analytical and intuitive techniques. Examples include beam and column, one- and two-way slab systems, wood and masonry systems, and wind and seismic analysis.

CET 341. Soils and Earthwork. 3 credits, 3 contact hours (3:0:0).
Prerequisite: MET 237 A study of the significant soil types and tests. Problems are investigated relating to soil mechanics, soil supported foundations for engineering structures. Appropriate field trips are made.

CET 411. Cost Estimating. 3 credits, 3 contact hours (3:0:0).
Prerequisites: CET 313, CET 314, CET 317. Take off of quantities of materials from typical building and highway projects. Pricing for labor, materials, and equipment. Crew sizes, productivity and manpower leveling. Computerized cost estimating and take off methods. Prepare a complete bid estimate for a construction project.

CET 413. Environmental Science. 3 credits, 3 contact hours (3:0:0).
Prerequisites: CET 313, CET 314, CET 431. An introduction to construction-related environmental science topics, including basic environmental chemistry, geology, ground water hydrology, basic air quality, surface water run-off, erosion and sedimentation control, indoor air quality, and vibration analysis. Case studies cover various construction activities with respect to their effect on the environment and the manner in which they can be controlled.
CET 415. Construction Project Management. 3 credits, 3 contact hours (3;0;0).
Restriction: Senior standing in construction engineering technology or construction management technology. An introduction to construction management and administration methods and procedures including the design and construction process, project organizational structure, construction planning, contract administration, records and reports, financial management, risk analysis, manual and computerized GANTT and CPM scheduling, change orders and extra work, claims and disputes, cost accounting and document tracking.

CET 416. Senior Construction Project. 2 credits, 3 contact hours (1;2;0).
Prerequisites: CET 415; second semester senior standing in construction engineering technology or construction management technology. Simulates the methods and procedures used to successfully manage a construction project. Provides familiarization with constructability analysis, value engineering, productivity improvement, quality control, advanced field and office administration techniques, problem solving, and construction automation. Extensive use of construction-related computer software. Written submittals and oral presentations required.

CET 421. Construction Contracts. 3 credits, 3 contact hours (3;0;0).
Legal aspects of the various types of construction contracts and specifications. Scope, format, and use of various types of contracts such as owner- contractor and contractor-sub-contractor.

CET 431. Construction Testing. 3 credits, 4 contact hours (2;2;0).
Prerequisite: MET 237 Exposure to a variety of construction-related field tests and field testing equipment. Includes concrete mix design, concrete testing, soil density and compaction, asphalt tests, load testing of wood, mortar analysis and testing, brick and CMU testing, and quality control methods and procedures for finishes.

CET 435. Design of Temporary Structures. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CET 331. Analysis of loadings on, and design of, temporary structures required in construction. Formwork, shoring and scaffolding systems, temporary bridges, trenching, and temporary retaining walls are among the subjects covered. Construction safety associated with temporary structures is stressed.

CET 460. Forensics in Construction. 3 credits, 3 contact hours (3;0;0).
Restriction: Senior standing in construction engineering technology. Construction failure, in its many forms, are both interesting and instructive and in the context of this course students will study construction failures in their many forms.

CET 490. Special Project. 3 credits, 3 contact hours (0;0;3).
Prerequisite: Senior standing in construction engineering technology. The student works on one or more individually selected projects guided by the department staff. The project must be construction related and may include planning, research (library or lab), engineering report, and statistical, analytical, or field investigation. Any of these may follow class-inspired direction, or the students may branch out on their own. The project(s) of each student must be completed and professionally presented by assigned due date for appropriate review and recording of accomplishments.

CET 491. Special Projects. 1 credit, 1 contact hour (1;0;0).
Restriction: Senior standing in construction engineering technology. The student works on an individually selected project guided by the department staff. The project may be design- or construction-related and may include research, engineering design, technical report, or field investigation. Requirements will include a written submittal.

CET 492. Special Projects. 2 credits, 2 contact hours (0;0;2).
Restriction: Senior standing in construction engineering technology. The student works on a selected project guided by the department staff. The project may be design or construction related and may include research, engineering design, technical report or field investigation. Requirements will include a written submittal.

CET 493. Special Projects. 3 credits, 3 contact hours (3;0;0).

CET 497. Co-op Work Experience. 3 credits, 3 contact hours (0;0;3).
Restriction: Approval of the department, and permission of the Office of Cooperative Education and Internships. Provides major-related work experience as co-op/intern. Mandatory participation in seminars and completion of requirements that include a report and/or project. Note: Normal grading applies to this COOP Experience.

CIMT 101. Introduction to the Concrete Industry. 3 credits, 3 contact hours (3;0;0).
This course is an overview of the concrete industry including historical aspects, the chemistry, properties and uses of concrete, production and delivery, and management of production facilities. Students will also be introduced to concrete construction and contracting, environmental concerns, professionalism, and career opportunities in the concrete industry.

CIMT 205. Concrete Properties and Testing. 3 credits, 4 contact hours (2;2;0).
The effects of concrete-making materials (aggregates, cements, admixtures, etc.) on the properties of fresh and hardened concrete will be studied and analyzed from an applications point of view. Concrete mixture proportioning calculations, statistical analysis of strength tests, and the economics of various concrete mixes will also be discussed.

CIMT 210. Concrete Applications I. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CIMT 101 and CIMT 205. This course is the first of two courses designed to provide a detailed study of the many applications of concrete in the construction of buildings, pavements, and other facilities as they relate directly to the concrete industry. Emphasis will be placed on the advantages, disadvantages and unique problems facing the concrete industry and suppliers of materials used in the manufacture of concrete products.
CIMT 305. Concrete Applications II. 3 credits, 3 contact hours (3;0;0).
This course is a continuation of CIMT 210 and focuses on codes, specifications and industry standards as well as the production and delivery issues related to traditional and unique concrete applications.

CIMT 310. Concrete Products and Delivery. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CIMT 210 Concrete Applications I. This course will provide the student with a basic understanding of managing the order and delivery process common to all concrete products. An emphasis will be given to planning, organizing and controlling at both the management level as well as the supervisory level.

CIMT 315. Concrete Construction Methods. 3 credits, 3 contact hours (3;0;0).

CIMT 405. Advanced Concrete Testing and Quality Assurance. 3 credits, 4 contact hours (2;2;0).
Prerequisite: CIMT 205. This course will focus on advanced concrete testing techniques and quality assurance procedures currently used in the industry for traditional and specialty applications.

CIMT 410. Senior Project in CIM. 3 credits, 3 contact hours (3;0;0).
Prerequisite: Senior standing in Concrete Industry Management. The student works on one or more individually selected projects guided by the department staff. The project must be concrete industry related and may include planning, research (library or lab), engineering report and statistical, analytical, or field investigation. Any of these may follow class-inspired direction, or the students may branch out on their own. The project(s) of each student must be completed and professionally presented by assigned due date for appropriate review and recording of accomplishments.

CIMT 491. Special Project in CIM. 1 credit, 1 contact hour (1;0;0).

CIMT 492. Special Project in CIM. 2 credits, 2 contact hours (2;0;0).

CIMT 493. Independent Study. 3 credits, 3 contact hours (0;0;3).

CIMT 497. Co-op Work Experience I. 3 credits, 3 contact hours (0;0;3).
Prerequisites: Approval of the department, and permission of the Office of Cooperative Education and Internships. Provides major-related work experience as co-op/intern. Mandatory participation in seminars and completion of requirements that include a report and/or project. Note: Normal grading applies to this COOP Experience.

CIMT 498. Co-op Work Experience II. 3 credits, 3 contact hours (0;0;3).

CMT 332. Structural Systems for Construction Management. 3 credits, 3 contact hours (3;0;0).
Study of the types and behavior of building structural systems using qualitative analysis techniques. Systems to be covered will include those involving structural steel, reinforced concrete, wood and timber, and plain and reinforced masonry. The effect of wind and seismic events on these systems is reviewed.

CMT 414. Environmental Science for Construction Management. 3 credits, 3 contact hours (3;0;0).
An introduction to construction-related environmental topics, including environmental chemistry, geology, ground water hydrology, outdoor air quality, surface water run-off, erosion and sedimentation control, indoor air quality, asbestos abatement, radon remediation, and noise and vibration.

CMT 436. Temporary Structures for Construction Management. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CMT 332. Study of the types of the various temporary systems and structures used in field construction activities, including concrete forming and falsework, sheeting and shoring for excavations, scaffolding, barricades, ladders, and temporary bridges and ramps. Construction safety with respect to the systems is covered.

CMT 452. Mechanical and Electrical Systems for Construction. 3 credits, 3 contact hours (3;0;0).
Study of the different types of water supply, plumbing, fire protection, heating, ventilation, air conditioning and electrical systems commonly employed in residential and commercial buildings. Case studies include an overview of the design of these systems and their installation in the field.

SET 200. Introduction To Geomatics. 3 credits, 3 contact hours (3;0;0).
Plane surveying with angle and distance measurements; leveling; topographic mapping; traverse and area computations; horizontal and vertical curves; cross sections; triangulation; state plane coordinates; 3-D surveying using Global Positioning System (GPS), Geographic Information Systems (GIS) and remote sensing technology for surveying and mapping applications. Emphasis is on the use of the computers for solving typical field and office problems.

SET 200A. Introduction to Geomatics Lab. 1 credit, 3 contact hours (0;3;0).
Co-requisite: SET 200 or department permission. Field exercises in conjunction with the classroom exercises utilizing classical and electronic surveying instruments and COGO/CAD software.

SET 203. Introduction to Remote Sensing Science & Technology. 3 credits, 3 contact hours (3;0;0).
Prerequisites or Corequisites: Computing Literacy GER. This course provides an introduction to remote sensing (RS), emphasizing the techniques that are used to monitor the Earth’s surface. It will introduce the fundamentals of electromagnetic radiation (EMR), principles and concepts of RS, and EMR measurement by air-and space-borne optical, thermal, radar and LiDAR instruments, as well as Unmanned Aerial Vehicles (UAVs). The main theme will be how qualitative and quantitative information from RS data are acquired, processed, analyzed and utilized.

SET 207. Evidence and Procedures for Property Surveys. 3 credits, 3 contact hours (3;0;0).
Co-requisites: CE 200, SET 200 or permission of instructor. Introduction to surveying law and to the concept of evidence related to boundary locations as discoverable on the ground and through deeds or other written records. Understanding of the principles of property law, titles, land ownership, transfer of land ownership, deed descriptions, evidence recovery and conflict resolutions.
SET 280. Marine Surveying. 4 credits, 6 contact hours (3;3;0).
Prerequisite: CE 200 or SET 200. Marine Surveying builds on the core competencies introduced in "Introduction to Geomatics". This course focuses on computer generated solutions for nautical charts and water boundary delineations using imaging, optical, LiDAR, and acoustic observations via marine, airborne, and space-based platforms; to understand marine surveying technology for solutions on environmental problems; develop skills and techniques to enhance, interpret, and analyze acoustic measurements using computer-based methods.

SET 301. Route Surveying. 4 credits, 6 contact hours (3;3;0).
Co-requisites: CE 200, SET 200 or equivalent, or permission of instructor. Horizontal and vertical curves computation and layout with regard to highway design. Special emphasis on complex curves. Topics include control, positioning, error analysis, highway design problems, and layout. Concepts of right-of-way surveys. Also included is an introduction on the concepts of machine control.

SET 302. Geodetic Control Surveying. 4 credits, 6 contact hours (3;3;0).
Co-requisites: CE 200, SET 200 or equivalent, or permission of instructor. A study of the higher order methods and techniques of surveying such as Global Positioning System (GPS) with observations of Real-Time networks, 1st, 2nd and 3rd Orders of Accuracy along with the requisite computations to reduce these observations to measurements and the applications of these measurements to the State Plane Coordinate systems and the geoid.

SET 303. Photogrammetry and Aerial Photo Interpretation. 4 credits, 6 contact hours (3;3;0).
Prerequisite: CE 200 or equivalent. A review of the principles of photography, including the physical science of optics as related to the use of aerial photos, to engineering and land surveying projects. Includes the necessary mathematics of photogrammetry and the process of designing and establishing the required data for proper acquisition of photogrammetric information.

SET 304. Adjustment Computations I. 3 credits, 3 contact hours (3;0;0).
Prerequisites: Calculus I or equivalent. A course designed to give the student the necessary knowledge to reduce survey observations to measurements; to analyze the data to determine the relationship of adjusted measurements to the observations; to verify that the mathematical constraints have been met; and to introduce approximate and least squares adjustments of surveying observations.

SET 307. Boundaries and Adjacent Properties. 3 credits, 3 contact hours (3;0;0).
Prerequisites: SET 207 or equivalent, or permission of instructor. A course on legal principles regarding boundaries and the constructive solutions of the problems of boundary surveying by a consideration of deed descriptions and examples of their application to surveying.

SET 360. Digital Surveying Methods. 3 credits, 3 contact hours (3;0;0).
The goal of this course is that students will be taught skills in using robotic and digital geospatial data collection technologies for mapping using Computer Aided Drafting (CAD) methods. The course has three parts. Part 1 deals with data collection, where both analogue and digital data collectors of field observations are covered. Methods focus on approaches that minimized the contribution for operator and instrument errors on the observations. In part 2, emphasis is on data preparation, reductions, and processing for coordinate computations. Part 3 focuses on CAD methods for preparing as-built site plans, plat or survey diagram, survey work plan, CAD modeling capabilities to construct a Digital Elevation Model (DEM) or a Digital Surface Model (DSM), topographic mapping outputs, and construct GIS layers from survey data. The emphasis of this course is on hands-on exercises in the practice of geospatial data collection, handling instrumentation, data processing and data representation.

SET 401. Fundamentals Of Geodesy. 3 credits, 3 contact hours (3;0;0).
Prerequisite: SET 302 and SET 303. Geodesy and its relation to surveying and other disciplines. Topics include geometric, physical and satellite geodesy. Also includes the concept of map projection.

SET 403. Remote Sensing Principles for Geomatics. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 200 or SET 200. Principles of remote sensing for Geomatics application build on the core competencies introduced in Introduction to Surveying. This course focuses on computer generated solutions from technologies used for the acquisition and production of geospatial data via terrestrial, airborne, and space-based platforms; to understand remote sensing technology for solutions on scientific environmental problems; develop skills and techniques to enhance, interpret, and analyze digital imagery using computer-based methods.

SET 404. Adjustment Computations II. 3 credits, 3 contact hours (3;0;0).
Prerequisite: SET 304. Concepts of survey observations for adjustment and estimation models. A continuation of the theory of least squares and the mathematical weighting of observations. Also includes the statistical evaluation of least squares results with hands-on training using state-of-the-art industry standard software.

SET 407. Boundary Line Analysis. 4 credits, 6 contact hours (3;3;0).
Prerequisite: SET 307. Develops the analytical synthesis of real property law, land surveying procedures, and scenario development compatible with current case law decisions for the development of most probable scenarios of boundary location for the court's consideration.

SET 420. Geographic/Land Information Systems. 4 credits, 6 contact hours (3;3;0).
Prerequisites: SET 307 or MET 205 or permission of instructor. Geographic/Land Information System builds on the core competencies that were introduced in the course "Introduction to Surveying". This course focuses on understanding the fundamentals of Geographic/Land Information Systems (GIS/LIS) and Multi-Purpose Cadastres. Topics on LIS emphasize issues relating to the design, implementation, and maintenance of land records. Topics on GIS emphasize GIS data models (vector versus raster) and database development for applications in diverse fields like criminal justice, economics, and infrastructure. Students will learn practical skills on web-based mapping and GIS.
SET 423. Remote Sensing of the Environment. 3 credits, 3 contact hours (3;0;0).
Prerequisite: SET 303. This course focuses on various aspects of remote sensing applications in the domain of natural resources. Students will have the opportunity to obtain hands-on experience through real-world applications of remote sensing technologies in the biosphere, the hydrosphere, the pedosphere, the atmosphere, and the built environment. Students will come out of this course with a mastery of a wide range of interpretation, measurement, environmental monitoring and mapping skills using remotely sensed data.

SET 433. Remote Sensing Digital Image Processing. 3 credits, 3 contact hours (3;0;0).
Prerequisite: SET 303. This course introduces conceptual and practical aspects of digital image analysis from airborne and spaceborne earth-observing instruments, and provides up-to-date information on analytical methods used to analyze digital remote sensing data. The project-based course will emphasize the advanced techniques for remote sensing data processing and analysis. In-class exercises will give students hands-on experience in the fundamentals of digital image processing and information extraction techniques.

SET 440. Land Development. 3 credits, 3 contact hours (3;0;0).
Prerequisite: SET 207 and CE 321 or equivalent. Understanding the process of development of land through the study of land use law, federal, state and municipal land use regulations, federal and state regulations regarding environmental issues and the administrative and statutory laws governing the preparation of land surveys; impart the ability to prepare a land survey from initial contact and the proposal phase to preliminary and final plan approval through a class project designed to cover all of these phases.

SET 490. Senior Project in Surveying. 2 credits, 2 contact hours (2;0;0).
Prerequisite: Senior standing. The student works on an individual surveying project guided by the department staff. The project should concentrate on a specific aspect of surveying, not necessarily on field measurements. Project includes library research, written report and oral presentation of findings.

SET 491. Special Projects in Surveying. 1 credit, 1 contact hour (0;0;1).
This course provides students with research experience in Geomatics/Surveying at the undergraduate level. Course content and scope of study will be approved by the coordinator of the SET program. Topics can include GPS data processing, marine surveying for bathymetric modeling and generalization, and geophysical surveying using gravity and topography data. Course outcomes include knowledge of advanced data processing, data analysis, and interpretation at the undergraduate level.

SET 492. Special Projects in Surveying. 2 credits, 2 contact hours (0;0;2).
This course provides students with research experience in Geomatics/Surveying at the undergraduate level. Course content and scope of study will be approved by the coordinator of the SET program. Topics can include GPS data processing, marine surveying for bathymetric modeling and generalization, and geophysical surveying using gravity and topography data. Course outcomes include knowledge of advanced data processing, data analysis, and interpretation at the undergraduate level.

SET 493. Special Projects in Surveying. 3 credits, 3 contact hours (0;0;3).
This course provides students with research experience in Geomatics/Surveying at the undergraduate level. Course content and scope of study will be approved by the coordinator of the SET program. Topics can include GPS data processing, marine surveying for bathymetric modeling and generalization, and geophysical surveying using gravity and topography data. Course outcomes include knowledge of advanced data processing, data analysis, and interpretation at the undergraduate level.