B.S. in Chemical Engineering

(120 credits)

First Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 125</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 125A</td>
<td>General Chemistry Lab I</td>
<td>1</td>
</tr>
<tr>
<td>FED 101</td>
<td>Fundamentals of Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>English Composition: Introduction to Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>MATH 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 111</td>
<td>Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 111A</td>
<td>Physics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>FYS SEM</td>
<td>First-Year Student Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

Term Credits 17

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 101</td>
<td>Introduction to Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 126</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CS 115</td>
<td>Introduction to Computer Science in C++</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>English Composition: Introduction to Writing for Research</td>
<td>3</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 121A</td>
<td>Physics II Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Term Credits 18

Second Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>Material and Energy Balances</td>
<td>4</td>
</tr>
<tr>
<td>CHE 230</td>
<td>Chemical Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Calculus III A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>History and Humanities GER 200 level (http://catalog.njit.edu/undergraduate/academic-policies-procedures/general-education-requirements/ger-200-level/)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 210</td>
<td>Career Planning Seminar for En</td>
<td>1</td>
</tr>
</tbody>
</table>

Term Credits 14

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 260</td>
<td>Fluid Flow</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 236</td>
<td>Physical Chemistry for Chemical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 243</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 244A</td>
<td>Organic Chemistry I Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

Term Credits 16

Third Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 342</td>
<td>Chemical Engineering Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 370</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 339</td>
<td>Analytical/Physical Chem Lab for Chemical Engineers</td>
<td>2</td>
</tr>
<tr>
<td>MATH 225</td>
<td>Survey of Probability and Statistics</td>
<td>1</td>
</tr>
<tr>
<td>MTEN 201</td>
<td>Introductory Principles of Materials Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits 13

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 312</td>
<td>Chemical Process Safety</td>
<td>3</td>
</tr>
<tr>
<td>CHE 349</td>
<td>Kinetics and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Separation Processes I</td>
<td>3</td>
</tr>
</tbody>
</table>
B.S. in Chemical Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 365</td>
<td>Chemical Engineering Computing</td>
<td>3</td>
</tr>
<tr>
<td>COM 313</td>
<td>Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 489</td>
<td>Process Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHE 495</td>
<td>Chemical Engineering Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>IE 492</td>
<td>Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHIL 334</td>
<td>Engineering Ethics and Technological Practice: Philosophical Perspectives on Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 472</td>
<td>Process and Plant Design</td>
<td>4</td>
</tr>
<tr>
<td>CHE 496</td>
<td>Chemical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities and Social Science Senior Seminar GER</td>
<td>Link</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Total Credits

120

CoOp Option A Track

(144 credits)

First Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 125</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 125A</td>
<td>General Chemistry Lab I</td>
<td>1</td>
</tr>
<tr>
<td>FED 101</td>
<td>Fundamentals of Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>English Composition: Introduction to Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>MATH 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 111</td>
<td>Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 111A</td>
<td>Physics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>FYS SEM</td>
<td>First-Year Student Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 101</td>
<td>Introduction to Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 126</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CS 115</td>
<td>Introduction to Computer Science in C++</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>English Composition: Introduction to Writing for Research</td>
<td>3</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 121A</td>
<td>Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>Material and Energy Balances</td>
<td>4</td>
</tr>
<tr>
<td>CHE 230</td>
<td>Chemical Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Calculus III A</td>
<td>3</td>
</tr>
<tr>
<td>History and Humanities GER 200 level</td>
<td>Link</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 210</td>
<td>Career Planning Seminar for En</td>
<td>1</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
2nd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 260</td>
<td>Fluid Flow</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 236</td>
<td>Physical Chemistry for Chemical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 243</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 244A</td>
<td>Organic Chemistry I Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

Term Credits: 16

Third Year

1st Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 310</td>
<td>Co-op Work Experience I</td>
<td>12</td>
</tr>
</tbody>
</table>

Term Credits: 12

2nd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 342</td>
<td>Chemical Engineering Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 370</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 339</td>
<td>Analytical/Physical Chem Lab for Chemical Engineers</td>
<td>2</td>
</tr>
<tr>
<td>MATH 225</td>
<td>Survey of Probability and Statistics *</td>
<td>1</td>
</tr>
<tr>
<td>MTEN 201</td>
<td>Introductory Principles of Materials Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits: 13

Fourth Year

1st Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 410</td>
<td>Co-op Work Experience II</td>
<td>12</td>
</tr>
</tbody>
</table>

Term Credits: 12

2nd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 312</td>
<td>Chemical Process Safety</td>
<td>3</td>
</tr>
<tr>
<td>CHE 349</td>
<td>Kinetics and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Separation Processes I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 365</td>
<td>Chemical Engineering Computing</td>
<td>3</td>
</tr>
<tr>
<td>COM 313</td>
<td>Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits: 15

Fifth Year

1st Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 489</td>
<td>Process Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHE 495</td>
<td>Chemical Engineering Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>IE 492</td>
<td>Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 334</td>
<td>Engineering Ethics and Technological Practice: Philosophical Perspectives on Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Term Credits: 14

2nd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 472</td>
<td>Process and Plant Design</td>
<td>4</td>
</tr>
<tr>
<td>CHE 496</td>
<td>Chemical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| | Humanities and Social Science Senior Seminar GER | 3 |

Term Credits: 13

Total Credits: 144

CoOp Option B Track

(144 credits)
First Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 125</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 125A</td>
<td>General Chemistry Lab I</td>
<td>1</td>
</tr>
<tr>
<td>FED 101</td>
<td>Fundamentals of Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>English Composition: Introduction to Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>MATH 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 111</td>
<td>Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 111A</td>
<td>Physics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>FYS SEM</td>
<td>First-Year Student Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 101</td>
<td>Introduction to Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 126</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CS 115</td>
<td>Introduction to Computer Science in C++</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>English Composition: Introduction to Writing for Research</td>
<td>3</td>
</tr>
<tr>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 121A</td>
<td>Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>Material and Energy Balances</td>
<td>4</td>
</tr>
<tr>
<td>CHE 230</td>
<td>Chemical Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Calculus III A</td>
<td>3</td>
</tr>
<tr>
<td>History and Humanities GER 200 level</td>
<td>http://catalog.njit.edu/undergraduate/academic-policies-procedures/general-education-requirements/ger-200-level/</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 210</td>
<td>Career Planning Seminar for En</td>
<td>1</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 260</td>
<td>Fluid Flow</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 236</td>
<td>Physical Chemistry for Chemical Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 243</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 244A</td>
<td>Organic Chemistry I Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 342</td>
<td>Chemical Engineering Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 370</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 339</td>
<td>Analytical/Physical Chem Lab for Chemical Engineers</td>
<td>2</td>
</tr>
<tr>
<td>MATH 225</td>
<td>Survey of Probability and Statistics</td>
<td>1</td>
</tr>
<tr>
<td>MTEN 201</td>
<td>Introductory Principles of Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 310</td>
<td>Co-op Work Experience I</td>
<td>12</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Fourth Year

1st Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 312</td>
<td>Chemical Process Safety</td>
<td>3</td>
</tr>
<tr>
<td>CHE 349</td>
<td>Kinetics and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 360</td>
<td>Separation Processes I</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>CHE 365</td>
<td>Chemical Engineering Computing</td>
<td>3</td>
</tr>
<tr>
<td>COM 313</td>
<td>Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 410</td>
<td>Co-op Work Experience II</td>
<td>12</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Fifth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 489</td>
<td>Process Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHE 495</td>
<td>Chemical Engineering Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>IE 492</td>
<td>Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHIL 334</td>
<td>Engineering Ethics and Technological Practice: Philosophical Perspectives on Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 472</td>
<td>Process and Plant Design</td>
<td>4</td>
</tr>
<tr>
<td>CHE 496</td>
<td>Chemical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities and Social Science Senior Seminar GER [1]</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Term Credits</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

1 Technical Electives: Student must complete 6 credits of technically oriented subject-related courses approved by his or her advisor. Acceptable subjects include, but are not limited to:
- (1) CHE 491 [1] Research and Independent Study I and CHE 492 [1] Research and Independent Study II
- (2) Courses taken within a Minor requirements
- (3) Graduate level course taken within BS/MS or BS/PHD program
- (4) Courses in ACCT, BME, CE, CHEM, CHEM 300/699, CPT, ECE, ENE, ENTR, EM, EPS, EVSC, FIN, HRM, MATH, MGMT, ME, MRKT, MTEN, MTSE, NANO, OM, PHB, PHEN, PHYS

* Students must take Math 225 (Special Section for CHE, CHEM and BIOL majors only) as a corequisite of CHEM 339.

See the General Education Requirements “Refer to the General Education Requirements for specific information for GER courses”

This curriculum represents the maximum number of credits per semester for which a student is advised to register. A full-time credit load is 12 credits. First-year students are placed in a curriculum that positions them for success which may result in additional time needed to complete curriculum requirements. Continuing students should consult with their academic advisor to determine the appropriate credit load.

See the General Education Requirements “Refer to the General Education Requirements for specific information for GER courses”

This curriculum represents the maximum number of credits per semester for which a student is advised to register. A full-time credit load is 12 credits. First-year students are placed in a curriculum that positions them for success which may result in additional time needed to complete curriculum requirements. Continuing students should consult with their academic advisor to determine the appropriate credit load.