Mechanical and Industrial Engineering

Mechanical Engineering

Mechanical engineering is concerned with the design, development, manufacture, and operation of a wide variety of energy conversion and machine systems. The research and education facilities of the department are housed in the 60,000-square-foot Mechanical Engineering Building. Major research laboratories include Particle Technology, Energetic Materials, Machine Vision and Motion Analysis, Waterjet Machining, Robotics and Intelligent Manufacturing, Bearing Lubrication, and Plastic Processing and Analysis.

Master of Science in Mechanical Engineering

A program for engineering graduates who want advanced professional preparation and further graduate study in mechanical engineering.

Admission Requirements

Applicants are expected to have an undergraduate degree in mechanical engineering or a related field. General admissions requirements for master's programs as described in this catalog apply to applicants to the M.S. in Mechanical Engineering. Sufficient preparation in science and mathematics to complete the course of study is also necessary.

Doctor of Philosophy in Mechanical Engineering

This is a program for superior students with master's degrees in mechanical engineering or allied fields who wish to do advanced research in an area of mechanical engineering. In exceptional circumstances, highly qualified students with bachelor's degrees in mechanical engineering may be accepted directly into the doctoral program.

Admission Requirements

Applicants should have a master's degree from an accredited institution, and have successfully taken courses in applied mathematics and engineering sciences. In addition, applicants must fulfill the admissions requirements for doctoral study as specified in the Admissions section of this catalog. Students who lack an appropriate background will be required to take additional courses before gaining admission to the program. These courses are prescribed by the department on an individual basis and may not be applied as degree credit.

Industrial Engineering

Industrial Engineering (IE) is a field of study intended for professionals who are interested in managing and analyzing complex systems. IEs typically formulate mathematical and/or digital simulation models of these systems with the intention of improving system and economic performance. Unique and in contrast to other traditional disciplines in engineering IEs focus on information driven human decision making and a broad based systems perspective. IEs consider themselves to be virtually any setting where outcomes are influenced by key decisions.

Master of Science in Industrial Engineering

Individuals with a diversity of technical background have completed the MSIE degree. These individuals are attracted by the historically strong role played by IEs in modeling and analysis within traditional production and distribution settings, that now extend to healthcare, transportation, and a wide range of service industries. Program provides advanced training in operations research, supply chain, and process modeling and analysis. All courses are offered primarily in evening and weekend sessions at our Newark campus, and ideal for working professionals. Many courses are also offered online in an E-learning mode.

A program for individuals who seek professional advancement in the industrial engineering field.

Admission Requirements

A B.S. degree in an engineering, information technology, information technology, operations management, science, or related technical discipline. A bridge program is also available for suitable candidates.

Graduate Certificate Program

A 12-credit graduate certificate in Operations Productivity is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.

Doctor of Philosophy in Industrial Engineering

The objectives of the Ph.D. in Industrial Engineering program are to provide the knowledge and develop the skills that students need to become leaders of research in academia, industry and government.

This program is intended for highly qualified students who wish to pursue advanced research in industrial engineering and related areas. The program emphasizes two areas: manufacturing systems and assurance sciences, and human factors and occupational safety.
Admission Requirements
Applicants should have a master's degree in industrial engineering or a related field. In certain circumstances, a qualified student with a bachelor's degree in industrial engineering or related field may be admitted into the program.

Engineering Management
By drawing on the diverse resources available through the university and surrounding industry, the M.S. in Engineering Management program develops engineers and other technically trained individuals for leadership roles in a technologically-based, project-oriented enterprise.

Focus on interdisciplinary course work and research provides students with an advanced background in both the theoretical and practical aspects of managing technical/engineering projects and programs via case studies, role playing, and course work. The engineering management program faculty bring to the classroom a critical blend of practical and academic experience.

Master of Science in Engineering Management
The program is particularly valuable to individuals who have a number of years of experience in industry, government, and service organizations, or those who have been entrepreneurs. It provides these professionals with broad-based knowledge and skills to succeed as organizational managers and project managers, from conceptualization through implementation.

Admission Requirements
Eligibility for admission requires completion of an undergraduate degree in engineering, the sciences or a closely related area. Students are expected to have achieved an undergraduate GPA of at least 2.8 on a 4.0 scale. Students not satisfying the above requirement will be considered for conditional admission on a case-by-case basis. In some cases, a bridge program will be required to qualify for matriculation.

Graduate Certificate Program
A 12-credit graduate certificate in Construction Management, Operations Productivity, Pharmaceutical Management or Project Management is available as a step toward this degree. Please see Graduate Certificates in this catalog for further information. For more information about continuing and distance education, please contact the Division of Continuing Professional Education, 1-800-624-9850 or 973-596-3060; email: cpe@njit.edu.

Off-Campus Programs
At extension and corporate sites, NJIT offers sufficient courses to fulfill all degree requirements. NJIT faculty teach all courses. For locations, see Extension Programs in this catalog. The university's distance learning arm, ACCESS/NJIT, offers this program (as well as part of the bridge program described above) to qualified students who have access to the Internet and a VCR. In addition, distance-based, 12-credit graduate certificates in Construction Management, Operations Productivity, Pharmaceutical Management or Project Management, are available as a step toward this degree. See Graduate Certificates in this catalog. For further information about extension programs, ACCESS/NJIT programs, and graduate certificates, call the associate vice president of continuing and distance education, Division of Continuing Professional Education, 1 (800) 624-9850 or (973) 596-3060; email cpe@njit.edu.

Healthcare Systems Management
The MS in Healthcare Systems Management will train and educate graduates in the application of systems analysis and quantitative methods in managing the various components of the healthcare delivery system. The program provides graduates with contemporary knowledge and the needed technical expertise for the efficient design, management and operation of healthcare facilities, including hospitals, nursing facilities, clinics, and pharmacies. This expertise will span the subjects of systems engineering, operations management, and advanced information technologies and will present concepts and tools for both reducing healthcare system costs and increasing the quality of healthcare services. Healthcare Systems are defined as the network of physical facilities, equipment, informational technologies, and patient flow processes that are associated with providing and delivering healthcare services. Graduates would find jobs in hospitals and healthcare organizations, serving in progressively more responsible positions in the quality improvement, decision support, information technology, patient accounting, facilities planning, or operations management departments.

Admission Requirements
A B.S. degree in a technical discipline (e.g., Engineering, Computer Science, Informational Technology, Physics etc.). A bridge program is also available for suitable candidates from other degree majors. Individuals who have been working in a healthcare related organization for two or more years, and are now looking for additional skills to further progress their careers in the healthcare industry would be ideal candidates.

Manufacturing Systems Engineering
The manufacturing engineering discipline addresses problems and methods of manufacturing systems integration. The M.S. in Manufacturing Systems Engineering program emphasizes the interrelationships between manufacturing equipment, processes and controls, and their integration into production factories.

The curriculum is computer and multimedia intensive and includes the use and understanding of new technologies such as robotics, programmable logic controllers, microprocessors and computer-integrated manufacturing and their application in automated production, assembly, automated inspection, and automated packaging. Focus is on computer-aided design and computer-aided manufacturing. Automation laboratories are used that contain
many state-of-the-art devices including several industrial robots, CNC millers, CNC lathes, computer vision systems, and a fully automated flexible manufacturing system.

Master of Science in Manufacturing Systems Engineering

This is an interdisciplinary program of advanced study for individuals with backgrounds in engineering, focusing on efficient production in technology-intensive manufacturing industries.

Admission Requirements

Applicants should be graduates of an accredited undergraduate engineering program. Students with degrees in science may also be considered.

Occupational Safety and Health Engineering

The curriculum has been designed in accordance with the National Institute for Occupational Safety and Health (NIOSH), which sponsors the program. Through course work and research, individuals are exposed to all of the principal areas of concern to the entry-level safety professional, including how technology and hazardous materials affect the safety of the workplace.

NJIT's program is just one of a handful offered in the United States and the only master's-level program in New Jersey. NIOSH offers a limited number of stipends and tuition remission grants to qualified students.

Master of Science in Occupational Safety and Health Engineering

This program educates engineers in the specialty of occupational safety and health. Upon graduation, students are able to assume both the technical and managerial responsibilities of safety professionals.

Admission Requirements

An accredited bachelor's degree in an engineering or scientific field is normally required.

Pharmaceutical Systems Management

The MS program in Pharmaceutical Management (MSPhM) is designed to train and educate professionals for careers in the pharmaceutical industry by providing them with skills in the areas of quantitative systems analysis, planning and design of pharmaceutical process operations, and project management and implementation, relative to all technology intensive operations in this highly sophisticated industry. Application areas will include manufacturing operations, systems automation, packing and distribution, quality control and regulatory compliance, process and product validation, and supply chain management. Offered by the Department of Industrial and Management Systems Engineering in collaboration with the Pharmaceutical Engineering program, degree integrates a strong focus on technical oriented operations management with advanced knowledge of pharmaceutical manufacturing, validation, research and development processes.

Admission Requirements

A B.S. degree in an engineering, information technology, science, or related technical discipline. A bridge program is also available for suitable candidates from other majors. Individuals who have been working in the pharmaceutical industry for two or more years, and are now looking for additional skills to further progress their careers would be ideal candidates.

NJIT Faculty

A

Abdel-Malek, Layek, Professor

Abdou, George, Associate Professor

B

Bengu, Golgen, Associate Professor

Bladikas, Athanassios, Associate Professor

C

Cai, Wenbo, Assistant Professor

Caudill, Reggie J, Professor

Chen, Rong-Yaw, Professor Emeritus

Chester, Shawn A., Assistant Professor
D
Das, Sanchoy K., Professor
Droughton, John V., Professor Emeritus

F
Fenster, Saul K., Professor Emeritus
Fischer, Ian S., Professor
Florio, Pasquale J., Associate Professor

H
Harnoy, Avraham, Professor
Hatch, C., Richard, Professor Emeritus

J
Ji, Zhiming, Associate Professor

K
Kirchner, Robert P., Professor Emeritus
Koplik, Bernard, Professor
Kountouras, Harry V., Senior University Lecturer

L
Lee, Eon Soo, Assistant Professor
Linden, Martin J., Professor Emeritus

M
Mani, Balraj Subra, University Lecturer
McDermott, Kevin J., Associate Professor

N
Nadimpalli, Siva P.V., Assistant Professor
Narh, Kwabena A., Professor

R
Rao, I. Joga, Professor
Rosato, Anthony D., Professor

S
Samardzic, Veljko, University Lecturer
Singh, Pushpendra, Professor
Sodhi, Rajpal Singh, Professor
Surjanhata, Herli, Senior University Lecturer

T
Tricamo, Stephen J., Professor
W
Wilson, Charles E., Professor Emeritus
Wolf, Carl, Professor Emeritus

Z
Zhu, Chao, Professor

Programs

• Engineering Management - M.S. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/engineering-management-ms)
• Industrial Engineering - M.S. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/industrial-ms)
• Manufacturing Systems Engineering - M.S. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/manufacturing-systems-ms)
• Mechanical Engineering - M.S. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/mechanical-ms)
• Occupational Safety and Health Engineering - M.S. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/occupational-safety-health-ms)
• Pharmaceutical Systems Management - M.S. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/pharmaceutical-systems-management-ms)

Programs

• Industrial Engineering - Ph.D. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/industrial-phd)
• Mechanical Engineering - Ph.D. (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/mechanical-phd)

Programs

• Project Management (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/project-management-cert)
• Supply Chain Engineering (http://catalog.njit.edu/graduate/newark-college-engineering/mechanical-industrial/supply-chain-engineering-cert)

Mechanical and Industrial Engineering Courses

IE 501. Fundamentals of Industrial Engineering. 3 credits, 3 contact hours.
Basic concepts of industrial engineering for students who lack an undergraduate degree in the discipline, including: manufacturing processes, work methods and measurement concepts, basics of human factors, quality control, facilities design, production planning, operations research tools, and simulation models.

IE 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Restriction: permission from the industrial engineering program director and the Division of Career Development Services. Cooperative education internship providing on-the-job reinforcement of academic programs in industrial engineering. Work assignments and projects are developed by the co-op office in consultation with the industrial engineering program director. Work assignments are related to student's major and are evaluated by faculty coordinators in the IE department. Course cannot be applied toward degree credit.

IE 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Restriction: permission from the industrial engineering program director and the Division of Career Development Services. Course cannot be applied toward degree credit.

IE 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Restriction: graduate standing and permission from the industrial engineering program director, and the Division of Career Development Services. Course cannot be applied toward degree credit.

IE 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

IE 601. Measurement Methods for Performance Analysis of Operations. 3 credits, 3 contact hours.
Prerequisite: undergraduate mathematics for management science, or EM 602. Quantitative study of various analytical methods for designing and evaluating systems employed in the management of complex enterprises such as decision-making, efficiency measurement, and methods for obtaining optimal system performance.
IE 603. Behavioral Science in Engineering Organization. 3 credits, 3 contact hours.
Prerequisite: undergraduate probability and statistics, or EM 503. A study of scientific research on human behavior in organizations. Processes and problems of communication in engineering activities; line-staff and supervisor-subordinate relationships; formal and informal organizations; organization models; and technical and social structure of organizations.

IE 604. Advanced Engineering Statistics. 3 credits, 3 contact hours.
Prerequisite: IE 331 (see undergraduate catalog for description) or equivalent. The foundations of modern quality improvement, scientific basis of quality engineering, probability, statistical inference, statistical experimental design issues such as randomized blocks, factorial design at different levels, application to factorial design, building models, and implementation and critique of Taguchi’s contributions. Statistical software is used in the data analysis.

IE 605. Engineering Reliability. 3 credits, 3 contact hours.
Prerequisite: statistics. Concepts of modern reliability applied to practical industrial problems: statistical concepts, reliability through design, reliability through testing, analysis of reliability data, and the organization and management of a reliability program. Offered alternate years.

IE 606. Maintainability Engineering. 3 credits, 3 contact hours.
Prerequisite: statistics. Factors affecting maintainability design applied to military and industrial problems: statistical concepts; maintainability prediction, allocation, and demonstration; availability, system and costeffectiveness; provisioning; optimal maintenance policies; and management of a maintainability program.

IE 608. Product Liability Control. 3 credits, 3 contact hours.
Product liability and the effect of legal doctrines on minimizing hazards of design and manufacture. Use of actuarial techniques and legal precedents applicable to design, manufacturing, advertising, and marketing problems: warranties, notices, disclaimers, definition of liability, use of expert witnesses, reliability prediction and analysis methods, safety engineering concepts, and design review. A review of government regulations for safety and protection, as well as mandatory and voluntary standards will also be included.

IE 609. Advanced Analytical Engineering Statistics. 3 credits, 3 contact hours.
Prerequisite: IE 604. An extension of the techniques of engineering statistical analysis to industrial applications. Emphasis is placed on the design of experiments and analysis of tests for multivariate level problems.

IE 610. Transportation Economics. 3 credits, 3 contact hours.

IE 614. Safety Engineering Methods. 3 credits, 3 contact hours.
Prerequisites: introductory course in statistics and industrial or construction management. Application of selected safety engineering methods to detect, correct, and prevent unsafe conditions and procedures in future practice. Methods selected are from safety management and programs; loss prevention; fire protection; systems safety; the design of buildings and other facilities; and the design of products, machinery, and equipment. Engineering problems in designing and constructing a hazard-free environment.

IE 615. Industrial Hygiene and Occupational Health. 3 credits, 3 contact hours.
Prerequisite: one year of college physics and one semester of college chemistry or biology. Introduction to industrial hygiene. Recognition, evaluation and control of human exposure to noise, heat, bio-hazards, chemicals, radiation, and improper lighting. Government standards, field measurements, work practices, engineering designs, and the effects of excessive exposure on worker health and productivity.

IE 618. Engineering Cost and Production Economics. 3 credits, 3 contact hours.
Prerequisite: IE 502 or equivalent. Cost management of operational activities. Focuses on capital investment decision making and efficient resource utilization to achieve cost-effective operations. Topics include alternative investment evaluation, budgeting activity based costing, quality costs, life cycle management and relevant behavioral science. These are considered in the context of manufacturing and service industry application.

IE 621. Systems Analysis and Simulation. 3 credits, 3 contact hours.
Prerequisites: IE 331, IE 466 (see undergraduate catalog for descriptions), or equivalent or department approval. The application of well-integrated systems approach, systems and systems engineering in the system life cycle, system design process, mathematical tools and techniques applied to systems analysis, design for operational feasibility, systems engineering management, modeling techniques including simulation, application of discrete simulation techniques to model industrial systems, design of simulation experiments using software, output data analysis.

IE 622. Simulation and Risk Analysis in Operations Management. 3 credits, 3 contact hours.
Prerequisite: IE 331 (see undergraduate catalog for description) or equivalent. Introduction to the concepts, methodologies and applications of simulation in operations management. Foundations of simulation, Monte Carlo approaches, simulation models using spreadsheets, generating probabilistic outcomes using random number generation techniques, applying risk analysis software to spreadsheets for various decisions making. Variety of applications in operations management, finance and marketing. Software to develop models of practical operations management applications, is provided.

IE 623. Linear Programming. 3 credits, 3 contact hours.
Prerequisite: EM 602 or introductory course in operations research. Principles, methodology, and practical applications of linear programming to complex problems in production and marketing, simplex techniques, duality theory, parametric analysis, Wolfe and Dantzig's decomposition methods, ellipsoid method, and Karmakar's method.
IE 624. Heuristic Methods. 3 credits, 3 contact hours.
Prerequisites: EM 503 or equivalent. Techniques and concepts used to develop intelligent decision support systems. Application of rules called heuristics and models of reasoning to solve problems in engineering design and manufacturing. Topics include set theory, fuzzy subset theory, decision theory, logic, inference expert systems and single and multi-fault diagnostics.

IE 641. Operations Analysis. 3 credits, 3 contact hours.
Prerequisites: EM 602 and computer programming experience. Management systems and business behavior using industrial models. Special attention is given to the interaction of individual elements that make up the total system.

IE 642. Network Flows and Applications. 3 credits, 3 contact hours.
Prerequisite: EM 602 or equivalent. Theories, algorithms, computation complexity, and application of networks, shortest path, network flow, and minimum cost flow problems. Models of industrial service systems as network problems.

IE 643. Transportation Finance. 3 credits, 3 contact hours.

IE 644. Application of Stochastic Modeling in Systems Control. 3 credits, 3 contact hours.
Stochastic processes applied to control of various types of systems: Markov chains, queuing theory, storage theory applications to measure performance of flexible manufacturing systems, telecommunication and distributions networks and similar service systems. Knowledge of probability theory and linear algebra is essential.

IE 650. Advanced Topics in Operations Research. 3 credits, 3 contact hours.
Prerequisite: introductory course in operations research or equivalent. Current topics in deterministic models of operations research: linear programming, large scale decomposition, integer programming, dynamic programming, and nonlinear programming. Emphasis on optimization techniques for solving mathematical programming problems.

IE 651. Industrial Simulation. 3 credits, 3 contact hours.
Prerequisite: introductory course in statistics/simulation or instructor's permission. Statistical design and analysis of Monte Carlo simulation experiments from an engineering view. Examples are provided with emphasis on industrial and manufacturing applications of simulation modeling. Markovian processes simulation, random number generation, mathematical programming, heuristics and decision theory.

IE 652. Facilities Location and Plant Layout. 3 credits, 3 contact hours.
Prerequisite: introductory course in operations research or instructor's approval. Basic concepts of facilities location and plant layout. Quantitative and qualitative tools needed in industrial engineering, including single and multiple facilities location problems, site selections and allocation models, use of Duality theory in location and plant layout problem, and computerized layout planning.

IE 653. Facility Maintenance. 3 credits, 3 contact hours.
Prerequisite: EM 501 or equivalent. Intended for those individuals who manage the functioning and maintenance of physical facilities. Emphasis on planning and control of facilities use, maintenance, utility management, managerial control, budgets and costs, personnel administration, legal and safety, flexibility measurement, and design.

IE 655. Concurrent Engineering. 3 credits, 3 contact hours.
IE 659. Supply Chain Engineering. 3 credits, 3 contact hours.
Coordination of product manufacturing and logistic activities across the global supply chain is studied. Focus is on supply chain design, implementation, and control. Topics include transportation and distribution networks, inventory control, demand planning, materials handling and warehousing, supply chain contracts, manufacturing flexibility, product design for responsiveness, and ERP systems. Supply chain analytics concepts and relevant case studies are introduced.

IE 661. Man-Machine Systems. 3 credits, 3 contact hours.
Prerequisite: human factors engineering. Analysis of integrated man-machine systems: physical and psychological effects of systems of deterministic and conditional responses of individuals and groups, and the resulting interaction between individuals, groups, and machine systems; also current research and development pertaining to man-machine systems.

IE 662. Cognitive Engineering. 3 credits, 3 contact hours.
Prerequisite: IE 355 or equivalent. The purpose of this course will be to introduce the application of human factors and cognitive psychology principles to the user interface design of information technology, including computer systems, groupware and communications, handheld devices and Internet applications, and automatic speech recognition interfaces. The course will provide grounding in the engineering design processes used to enhance the usability of products and services, and usability testing methods used by user interface designers. Secondly, major areas and design problems in human-computer interaction and Information Technology will be covered, with real world examples. The course would be appropriate for advanced undergraduates in engineering, computer science, and psychology.

IE 664. Advanced Ergonomics. 3 credits, 3 contact hours.
Prerequisite: IE 355 or equivalent. The course covers important topics for ergonomics, including functional anatomy of the human body, work physiology and body energy expenditure, and biomechanics for people at work. Commonly used analytical tools for ergonomics will be introduced in the course.
IE 665. Applied Industrial Ergonomics. 3 credits, 3 contact hours.
Prerequisites: IE 355 (see undergraduate catalog for description) or IE 699. Introduces the fundamentals and applications of industrial ergonomics for improving equipment, tool, workplace, and job design. Engineers, as well as safety and health professionals, will benefit from the course by understanding the design principles for human operators and current issues in industrial ergonomics, and a variety of evaluating methodologies for the design.

IE 669. Human Design Factors in Engineering. 3 credits, 3 contact hours.
Prerequisite: engineering statistics. Human factors research related to workplace and equipment design and development. Capabilities and limitations of the human sensory-motor system. Design of displays and resulting interaction between individuals, groups, environments and machine systems. Current research in engineering pertaining to the man-machine interface. Not for IE students who have had an undergraduate course in human factors.

IE 670. Industrial Work Physiology. 3 credits, 3 contact hours.
Prerequisite: IE 669 or equivalent. A study of human physiological responses to industrial environmental factors emphasizing knowledge of human anatomy and physiological tolerances: skeletal, muscle, and neuromuscular systems, evaluation of physical work capacity and performance, changes in circulation and respiration during work. Semester project under the instructor's supervision is also required.

IE 672. Industrial Quality Control. 3 credits, 3 contact hours.
Prerequisite: engineering statistics. The management of quality assurance: operational and statistical principles of acceptance sampling and process control; quality problems in production lines, and introduction to total quality management concepts.

IE 673. Total Quality Management. 3 credits, 3 contact hours.
Introduces the concept of total quality management as applicable to industrial systems. Presents methods for product quality improvement. Emphasis is on prevention through quality engineering and design, and goes beyond traditional statistical process quality control. Presentation of recent methods in supplier management, quality assurance, process control, and competitor analysis. Includes Taguchi methods and quality function deployment. Description of ISO 9000 and Baldridge Award.

IE 674. Quality Maintenance and Support Systems. 3 credits, 3 contact hours.
Prerequisites: probability and statistics, IE 331 (see undergraduate catalog for description) or equivalent. Consideration of factors necessary for cost effective maintenance and support of technical operating systems. Topics discussed include service organization and management, spare parts and logistics, quality assurance, ISO9003 training. Examples from automation, computer systems, clinical engineering, power, and transportation will be used to illustrate application areas.

IE 675. Safety in Facility and Product Design. 3 credits, 3 contact hours.
Prerequisite: IE 614 or equivalent. Application of safety principles to minimize the health and safety hazards in the design and manufacture of various products. Practical techniques for, and economic ramifications of, conformance with the many statutes enacted to assure safe workplaces and products.

IE 677. Applied Statistics and Epidemiology for Hazard Analysis. 3 credits, 3 contact hours.
Prerequisite: IE 604 or equivalent. Application of statistical concepts to the field of hazard analysis including: investigation of root causes of accidents, their patterns and trends; rules for systematic data analysis; determination of commonality factors; availability and use of customized computer software.

IE 681. Interdisciplinary Seminar in Occupational Safety and Health. 1 credit, 1 contact hour.
Restriction: OSHE students, or permission of instructor. This is a required course for students who receive the trainee scholarship from the Occupational Safety and Health Engineering Program sponsored by the National Institute for Occupational Safety and Health (NIOSSH). Other graduate students are also welcome and encouraged to take the interdisciplinary seminar course. Students and residents in the ERC programs will be able to participate in an interdisciplinary course with students in industrial hygiene, occupational medicine and occupational safety.

IE 682. Industrial Safety and Health Evaluation. 3 credits, 3 contact hours.
Restriction: OSHE students, or permission of instructor. This is a required course for students who receive the trainee scholarship from the Occupational Safety and Health Engineering Program sponsored by the National Institute for Occupational Safety and Health (NIOSSH). Other graduate students are also welcome and encouraged to take this site visit course. Upon completion of this course, students will be able to plan and conduct a walk-through evaluation of health and safety hazards in a workplace. Students will also understand the role of occupational health and safety disciplines in the recognition and prevention of occupational injury and illness.

IE 685. Systems Safety. 3 credits, 3 contact hours.
Prerequisites: applied probability/statistics and introductory safety. Safety decision making and systems engineering applications to safety, including planning, managing and conducting system safety programs.

IE 686. Intro to Healthcare Systems. 3 credits, 3 contact hours.
This course provides a systems analysis view of healthcare services, combining economic, quality, enterprise data and activity costing perspectives. Operations, processes and activities that characterize the US Healthcare system are introduced. System costs, reimbursement methods and financial aspects in the healthcare. Focus on the application of information technologies and system engineering tools to effectively create and deliver value in the care process. Analytical tools for identifying opportunities for systems efficiency and effectiveness.

IE 687. Healthcare Enterprise Systems. 3 credits, 3 contact hours.
Prerequisite: IE 686. Provide a thorough understanding of the role of Healthcare Enterprise Systems in healthcare organizations. A detailed study of electronic health records, computerized physician order entry, and meaningful use standards. Design and implementation of enterprise level healthcare information systems, advanced decision support tools, and process mapping methods for optimal delivery of cost effective care. Analytical and quantitative methods that can be used to evaluate healthcare business processes, determine data requirements, and plan operating procedures.
IE 688. Healthcare Sys Perfor Modeling. 3 credits, 3 contact hours.
Prerequisite: IE 686. Presents advanced techniques and methods for modeling and evaluating the performance of healthcare systems, including operations research, and productivity analysis, and statistical analysis methods. Introduces the performance dynamics of healthcare systems, identifies key decision variables and formulates their effect on systems performance. Develop and optimize healthcare staffing models. Application of operations research methods to a wide range of healthcare scheduling, facility design and patient flow problems.

IE 699. Special Topics in Industrial Engineering. 3 credits, 3 contact hours.
Restriction: approval from the industrial engineering graduate advisor. Special course given when interest in a subject area develops. Advanced notice of topics will be given before registration.

IE 700. Master’S Project. 0 credits, 0 contact hours.

IE 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering. A written report must be submitted to the project advisor. The student cannot register in IE 700B more than once and the incomplete (I) grade is not allowed.

IE 701. Master’S Thesis. 0 credits, 0 contact hours.
Prerequisites: matriculation for the master of science degree, thesis advisor’s approval, and adequate graduate courses in the field of the proposed thesis. Candidates for the degree who choose this option must submit an acceptable thesis on an approved subject that contributes to the literature of the field, and preferably aids the candidate’s present or potential career. While original research may not always result, the thesis should provide a new conclusion or application. Approval to register for the thesis must be obtained from the thesis advisor. A student must continuously register for a minimum of 3 credits per semester until the thesis is completed. Total credit will be limited, however, to the 6 credits indicated for the thesis.

IE 701B. Master’S Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in IE 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

IE 701C. Master’S Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in industrial engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (IE 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

IE 704. Sequencing and Scheduling. 3 credits, 3 contact hours.
Prerequisite: IE 650 or equivalent. Advanced sequencing and scheduling for job shops, flow lines, and other general manufacturing and production systems are discussed in this course. Both deterministic and stochastic scheduling models are covered in detail. Heuristics and worst case analysis for unsolvable hard scheduling problems (NP-C problem) are introduced.

IE 705. Mathematical Programming in Management Science. 3 credits, 3 contact hours.
Prerequisites: IE 623 and IE 650. An advanced study of various mathematical programming techniques such as linear and non-linear, parametric, integer, stochastic and dynamic programming. Readings and discussions emphasize mathematical advances and applications in operations research.

IE 706. A Queueing Approach to Performance Analysis. 3 credits, 3 contact hours.
Prerequisite: IE 644 or equivalent. Newly developed techniques in the area of queueing networks that play a critical role in studying several aspects of discrete event stochastic systems such as FMS, computer-aided communication systems, transportation systems and service systems.

IE 725. Independent Research. 3 credits, 3 contact hours.
Prerequisite: approval from the industrial engineering program director. Program of study prescribed and approved by student’s advisor. This special course covers areas in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course.

IE 726. Independent Research II. 3 credits, 3 contact hours.
Prerequisite or corequisite: TRAN 610 or EM 693. Planning of individual airports and statewide airport systems. Functional decision of air and landside facilities. Orientation, number and length of runways. Concepts of airport capacity. Passenger and freight terminal facility requirements. Airport access systems. FAA operating requirements. Financial, safety and security issues. Same as CE 753 and TRAN 753.

IE 754. Port Design and Planning. 3 credits, 3 contact hours.
Prerequisite: TRAN 610 or EM 693. Functional design of the water and landsides for general cargo, liquid and dry bulk, and container operations. Yard and storage systems. Port capacity in an intermodal network. Economic, regulatory, and environmental issues. Same as CE 754 and TRAN 754.

IE 760. Quantitative Methods in Human Factors. 3 credits, 3 contact hours.
Prerequisite: IE 661. More advanced human factors engineering concepts analyzed quantitatively: systems modeling, control theory, human error, and decision making. Discussion of human factors, research design and data analysis. Operator/computer interaction is also emphasized.
IE 761. Advanced Studies in Human Factors. 3 credits, 3 contact hours.
Prerequisite: one year of graduate work in human factors or the equivalent. The course integrates various areas of graduate studies in human factors such as: work physiology, occupational safety, environment and human-machine systems. Detailed discussion of selected current papers covering theoretical review, experimental design, results, applications, and future research. Completion of semester project under instructor's guidance is mandatory.

IE 762. Psychophysical Methods in Human Factors. 3 credits, 3 contact hours.
Prerequisite: one year of graduate work in human factors or instructor's approval. This course considers various classical and modern psychophysical methods, signal detection theory, information theory, and human information processing applicable to advanced human factors/occupational safety research measurement and normative modeling.

IE 790. Doctoral Dissertation. 0 credits, 0 contact hours.
IE 790A. Doctoral Dissertation. 1 credit, 1 contact hour.
IE 790B. Doctoral Dissertation. 3 credits, 3 contact hours.
IE 790C. Doc Dissertation & Res. 6 credits, 3 contact hours.
IE 790D. Doc Dissertation & Res. 9 credits, 3 contact hours.
IE 790E. Doc Dissertation & Res. 12 credits, 3 contact hours.
IE 790F. Doct Dissertation & Res. 15 credits, 0 contact hours.
IE 790G. Doctoral Dissertation. 18 credits, 0 contact hours.

IE 791. Graduate Seminar. 0 credits, 0 contact hours.
A seminar in which faculty or others present summaries of advanced topics suitable for research. Discussion of research procedures, thesis organization, and content. Students engaged in research will present their own research for discussion and criticism.

IE 792B. Pre Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: IE 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in industrial engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ME 590. Graduate Co-op Work Experience I. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Cooperative education internship providing on-the-job reinforcement of academic programs in mechanical engineering. Work assignments and projects are developed by the co-op office in consultation with the mechanical engineering department. Work assignments are related to student's major and are evaluated by faculty coordinators in mechanical engineering. Course cannot be used for mechanical engineering degree credit.

ME 591. Graduate Co-op Work Experience II. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

ME 592. Graduate Co-op Work Experience III. 1 credit, 1 contact hour.
Prerequisites: permission from Department of Mechanical Engineering and Division of Career Development Services. Course cannot be used for mechanical engineering degree credit.

ME 593. Graduate Co-op Work Experience IV. 0 credits, 0 contact hours.
Prerequisite: One immediately prior 3-credit registration for graduate co-op work experience with the same employer. Requires approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.

ME 607. Advanced Thermodynamics. 3 credits, 3 contact hours.
Prerequisite: undergraduate thermodynamics. Basic laws of thermodynamics are applied to various thermodynamic systems. Topics include: availability, stability requirements, equation of state, property relations, properties of homogeneous mixtures, optimization applied to power generation and refrigeration cycles, and thermodynamic design of system components.

ME 608. Non-Equilibrium Thermodynamics. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics and heat transfer, and ME 616. (May be taken concurrently.) Principles and mathematical techniques of non-equilibrium thermodynamics applied to mechanical engineering problems. Topics include field theory, energy and entropy balances, variational principles, and applications to fluid flow, heat exchangers and combustion.

ME 609. Dynamics of Compressible Fluids. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, fluid mechanics, and thermodynamics. One-dimensional reversible and irreversible compressible fluid flow, including effects of variable area, friction, mass addition, heat addition, and normal shock; two-dimensional reversible subsonic and supersonic flows, and an introduction to the method of characteristics and two-dimensional oblique shock.
ME 610. Applied Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: undergraduate fluid mechanics, thermodynamics, heat transfer and differential equations. Fundamentals of conduction, convection and radiation heat transfer. Practical engineering applications of heat exchangers including the design approaches by Mean Temperature Difference and Effectiveness-NTU methods, fins, convection fouling factors, and variable property analysis.

ME 611. Dynamics of Incompressible Fluids. 3 credits, 3 contact hours.
Prerequisites: undergraduate fluid mechanics and ME 616. (May be taken concurrently.) An introduction to the hydrodynamics of ideal fluids; two-dimensional potential flow and stream functions; conformal mapping; and differential equations of viscous flow. Boundary layer theory and dimensional analysis are introduced.

ME 612. Gas Dynamics. 3 credits, 3 contact hours.
Prerequisite: ME 616. (May be taken concurrently.) Physical phenomena of gas dynamics and mathematical methods and techniques needed for analysis. Dynamic and thermodynamic relations for common flow situations are described through vector calculus. The nonlinearity of resulting equations and solutions such as numerical analysis, linearization or small perturbation theory, transformation of variables, and successive approximations are discussed. The method of characteristics is reviewed in detail for shock flows.

ME 613. Radiation Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, thermodynamics, heat transfer and ME 616. (May be taken concurrently.) Heat radiation of solid bodies, gases and flames; angle factors; radiative properties of electrical conductors and non-conductors; application of radiative networks to multi-body problems; diffuse specular reflectors: artificial satellites and space vehicles; analogy between heat transfer by radiation and electrical networks; and combined conduction and radiation problems.

ME 614. Continuum Mechanics. 3 credits, 3 contact hours.
Prerequisites: Undergraduate courses in mechanics, fluid mechanics, solid mechanics, and mathematics (linear algebra, differential equations, and vector calculus) or approval of the instructor. Fundamentals of the mechanics of continuous media. Specific topics include vector and tensor analysis; kinematics associated with finite deformation; the stress tensor; and the conservation laws of mass, linear momentum, angular momentum, and energy. Constitutive equations for linear and non-linear elastic solids and for inviscid and Newtonian fluids are discussed. The role of material invariance under superimposed rigid body motion and material symmetry in the formulation of appropriate constitutive equations are emphasized.

ME 615. Advanced Mechanical Vibrations. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and system dynamics. One-, Two- and Multiple degree of freedom systems, Lagrange's equation of motion, Runge-Kutta computation, Finite Element Method and classical methods for normal mode analysis, matrix notation and iteration procedure, and Fourier series representation for the solution of vibration problems.

ME 616. Matrix Methods in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisite: undergraduate differential equations. Applications of matrix algebra and matrix calculus to engineering analysis; matrix methods in solid and fluid mechanics; vibration, elasticity, viscous fluids, and heat transfer. Matrix theory is used to show the basic unity in engineering analysis.

ME 618. Selected Topics in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisite: departmental approval. Given when interest develops. Topics may include analysis and/or design of energy or mechanical systems of current interest to mechanical engineers.

ME 619. Nano-scale Characterization of Materials. 3 credits, 3 contact hours.
The course presents the basics of nanotechnology and the principles and application of advanced instrumentation for the characterization of nanostructures. Topics include atomic force microscopy, near-field optics, dielectric spectroscopy, and light scattering. The significant component of the course is laboratory work at the W. M. Keck Foundation Laboratory and research project.

ME 620. Mechanics of Materials. 3 credits, 3 contact hours.
Prerequisites: Undergraduate differential equations and mechanics of materials or linear elasticity. Governing equations and other balance laws; stress and strain distributions in solids subjected to various loading conditions; posing and solving boundary value problems for isotropic linear elastic solids; instabilities and other failure modes of linear elastic solids; and numerical techniques to solve the governing equations.

ME 621. Advanced Mechanics of Material. 3 credits, 3 contact hours.
Prerequisites: ME 620. ME 614 is strongly recommended Governing equations and other balance laws for the mechanics of solids; large deformation kinematics and non-linear material behavior; advanced constitutive models for solids; fundamentals of fracture mechanics; numerical techniques for the solution of non-linear solid mechanics problems.

ME 622. Finite Element Methods in Mechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and strength of materials. Using variational formulation and Ritz approximation, element equations for bar, beam, potential flow, heat transfer, torsion of a solid bar and plane elasticity problems are derived and solved with computer programs.

ME 624. Microlevel Modeling in Particle Technology. 3 credits, 3 contact hours.
Presents methodologies for analyzing the macroscopic properties of particulate systems in terms of the underlying microlevel processes. Significant components are the mathematical modeling of particulate systems at the microlevel, analytical and numerical methods for predicting macroscopic properties from microlevel models, and comparison of theoretical predictions with experimental results. Demonstrates the importance of the interaction of these three components in the scientific process. The first part concerns the flow of dry particles where any interstitial fluid can be ignored. The second part considers the flow of particles suspended in an interstitial fluid. Also includes a class project involving development of simulations. Same as CHE 625.
ME 625. Introduction to Robotics. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, kinematics and demonstrated competence in computer programming and ME 616. (May be taken concurrently.) Introduction to robotics, and computer-controlled programmable robotic manipulators; robot geometries; kinematics of manipulators; differential motion; work space planning and trajectory control; dynamics; robot sensing, and robot programming.

ME 626. Fatigue Fracture of Solids. 3 credits, 3 contact hours.
A comprehensive introduction to the linear elastic fracture mechanics covering the basics of linear elasticity, crack-tip stress, displacement, and strain fields; energetics of fracture; and fracture toughness testing. This will be followed by a brief introduction to plasticity and elastic-plastic fracture parameters such as J-integral. The state-of-the-art in fracture mechanics, such as cohesive zone models and fracture of emerging materials (e.g., battery materials), will be discussed along with the mechanisms of fracture and toughening in various materials. The course will include assignments and a group project where students undertake critical review of a peer reviewed journal paper on a fracture topic (approved by instructor).

ME 628. Machine Vision Principles and Applications. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and demonstrated competence in computer programming. Fundamentals of machine vision as applied to inspection, recognition, and guidance in mechanical and manufacturing processes. Emphasis on real-time machine vision algorithms for machine parts inspection and identification. Topics include lighting and optics, camera selection and calibration, image segmentation, edge detection, feature extraction, and pattern classification.

ME 630. Analytical Methods in Machine Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, machine design, and ME 616. (May be taken concurrently.) Theory and analytical methods used in machine design. Comparisons are made between approximate and exact engineering methods for evaluation of the range of applicability of solutions. Topics include advanced analysis of threaded members; keyed, splined, and shrink fits when subjected to torque; preloaded bearings; surging, presetting and buckling of coiled springs; and accurate analysis of impact stresses and stresses beyond the yield point.

ME 631. Bearings and Bearing Lubrication. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, machine design and ME 616. (May be taken concurrently.) The theoretical and physical aspects of lubrication: hydrostatic and hydrodynamic problems. Reynold's differential equation for pressure distribution applied to slider bearing and journal bearing problems with and without end leakage.

ME 632. Mechanical Engineering Measurements. 3 credits, 3 contact hours.
This course offers extensive mechanical engineering lab experience, including measurement fundamentals, hands-on experiments, uncertainty analysis, technique comparison, and professional engineering reports. It also focuses on the fundamental principles behind each methodology and relevant applications. The topics cover measurement in major mechanical engineering areas including thermodynamics, thermofluids, and control. Specialized experiments include fluidization, CAD/CAM, and NC machining. Comparisons of experimental results against theoretical or computational results are also required.

ME 633. Dynamics of Machinery. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and matrix analysis. Consideration of kinematics, constraints and Jacobians, linear and angular momentum and potential energy and conservative forces of mechanical systems. Application of principle of virtual work, D?Alembert's principle, method of virtual power and Lagrange's equation to systems of particles and systems of rigid bodies.

ME 635. Computer-Aided Design. 3 credits, 3 contact hours.
Prerequisites: undergraduate linear algebra (matrices operation) and differential equations. Adaptation of computer for solving engineering design problems; design morphology; simulation and modeling; algorithms; problem-oriented languages; use of available software; computer graphics, and automated design.

ME 636. Mechanism Design: Analysis and Synthesis. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and matrix analysis. Kinematic principles combined with computer-assisted methods for designing mechanisms; complex polar notation; and dynamic and kinetostatic analysis of mechanisms. Kinematic synthesis of planar mechanisms; graphical Burmester theory for plane linkage synthesis; and planar linkage synthesis for function and path generation.

ME 637. Kinematics of Spatial Mechanisms. 3 credits, 3 contact hours.
Prerequisites: undergraduate kinematics, dynamics, knowledge of matrices and ME 616. (May be taken concurrently.) Advanced techniques for the dual-number coordinate-transformation matrix modeling to perform the displacement, velocity, static and dynamic force analysis of spatial mechanisms. Applications considered will include shaft couplings, skew four-bars, wobble plates, generalized slider-cranks and robotic manipulators.

ME 638. Computer-Aided Machining. 3 credits, 3 contact hours.
Prerequisites: demonstrated competence in computer programming, ME 305, ME 616 and ME 635 or equivalent. Introduction of computer applications to understand integrated computer-aided machining process. Included in the course are the fundamentals of motion control and NC/CNC/DNC machining, part programming and post-processors, and advances in CAM. Student projects are carried out using appropriate manufacturing software.

ME 641. Refrigeration and Air Conditioning. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations, fluid mechanics and thermodynamics. Refrigeration and air conditioning cycles; comfort analysis, psychometric chart analysis, heat and mass transfer steady and transient processes, heating and cooling design loads, energy loads and standards requirements.
ME 643. Combustion. 3 credits, 3 contact hours.
Prerequisites: Undergraduate thermodynamics & fluid mechanics. Chemical & physical process of combustion: ideal combustion, actual combustion, mass balance, energy of reaction, maximum adiabatic combustion temperature, chemical equilibrium, heating values of fuels, combustion in furnaces, internal combustion engines & other heat engines, with emphasis on the analysis & control of the products of combustion in light of environmental considerations.

ME 644. Building Environmental Control Principles. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, fluid mechanics, heat transfer and differential equations. Control systems for buildings including control of temperature, moisture and air quality. Optimization of systems for control of building energy use. Modern microprocessor-based control systems, including direct digital control, proportional and integral controllers, predictive control, adaptive control, optimum start controllers and optimal control.

ME 653. Control of Electro-Mechanical Networks. 3 credits, 3 contact hours.
Prerequisites: undergraduate electrical circuits and mechanical vibrations or equivalent. Electro-mechanical systems; control loops; use of mechanical networks in dynamic systems; and stability and response to various inputs in electro-mechanical networks.

ME 655. Introduction to Modern Control Methods. 3 credits, 3 contact hours.
Prerequisites: undergraduate system dynamics and automatic controls. Introduction to modern control methods applied to mechanical and manufacturing systems. Topics include state variable feedback, observer theory, nonlinear control, optimal control, and adaptive control for both continuous and discrete systems.

ME 660. Noise Control. 3 credits, 3 contact hours.
Prerequisites: undergraduate differential equations and physics. Engineering methods for reducing noise pollution; reduction of intensity at the source; limitation of transmission paths and absorption; application to structures, machinery, ground transportation, aircraft, and noise measurement.

ME 670. Introduction to Biomechanical Engineering. 3 credits, 3 contact hours.
Prerequisites: undergraduate thermodynamics, statics, and dynamics. Introduction to biomechanical engineering of physiological systems; fluid flow, structural, motion, transport, and material aspects; energy balance of the body, and the overall interaction of the body with the environment.

ME 671. Biomechanics of Human Structure and Motion. 3 credits, 3 contact hours.
Prerequisites: undergraduate statics, kinematics, and dynamics. Principles of engineering mechanics and materials science applied to human structural and kinematic systems and to the design of prosthetic devices. Topics include anatomy; human force systems; human motion; bioengineering materials; and design of implants, supports, braces, and replacements limbs.

ME 675. Mechanics of Fiber Composites. 3 credits, 3 contact hours.
Prerequisites: ME 315 (see undergraduate catalog for course description) and demonstrated competence in computer programming. Introduces various design problems using fiber composites. Analysis of general fiber composite laminate and short fiber composites, fracture mechanics, fatigue, creep and viscoelasticity, thermal stresses, special layups and associated optimization problems.

ME 676. Applied Plasticity. 3 credits, 3 contact hours.
Prerequisite: ME 620 or equivalent. Fundamentals of plasticity applied to mechanical and manufacturing engineering problems. Topics include elastic-plastic analysis for beams, rings and plates. Plastic instability and slip-line fields are considered.

ME 678. Engineering Design of Plastic Products. 3 credits, 3 contact hours.
Prerequisite: Knowledge of Pro/Engineer (or IDEAS). Structure and properties of plastics including stress-strain behavior and the effect of fillers and reinforcements. Designing for impact, flexure, shear, friction, puncture, creep and fatigue. Case studies of structural, electrical, and optical applications.

ME 679. Polymer Processing Techniques. 3 credits, 3 contact hours.
Prerequisites: undergraduate courses in fluid dynamics and heat transfer. Techniques for processing of plastics: extrusion, injection molding, compression molding, thermoforming, casting.

ME 680. Polymer Processing Equipment. 3 credits, 3 contact hours.
Prerequisites: CHE 645 or equivalent and undergraduate heat transfer. Application of heat transfer, fluid mechanics, and thermodynamics to the design and control of polymer processing equipment. Detailed consideration of extrusion, collandering, rotational molding, stamping, and injection molding.

ME 700. Master’s Project. 0 credits, 0 contact hours.
Prerequisite: department approval. An extensive paper involving design, construction, and analysis, or theoretical investigation. Further information may be obtained from the graduate advisor.

ME 700B. Master’s Project. 3 credits, 3 contact hours.
Approval of the project advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. A written report must be submitted to the project advisor. The student cannot register in ME 700B more than once and the incomplete (I) grade is not allowed.

ME 701. Master’s Thesis. 0 credits, 0 contact hours.
Prerequisite: department approval. Projects involving design, construction, experimental, or theoretical investigation carried out under the supervision of a designated member of the mechanical engineering faculty. The completed written thesis must be defended in a publicly announced oral defense. A student must register for a minimum of 3 credits per semester until completion, although degree credit will be limited to the 6 credits indicated for the thesis.
ME 701B. Master's Thesis. 3 credits, 3 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student is expected to defend the thesis upon accrual of six thesis credits. Additional registration in ME 701B, beyond six credits, is required every semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ME 701C. Master's Thesis. 6 credits, 6 contact hours.
Approval of the thesis advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering that can lead to a quality publication. A written thesis must be defended and approved by a committee of at least three faculty members. The student must continue registering for three thesis credits (ME 701B) each semester until successful thesis defense (six credits count toward degree requirements and time limits apply).

ME 710. Conduction Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: ME 610 and ME 616 or equivalent. Heat transfer by conduction: differential and integral forms of the energy equation for isotropic and anisotropic material. Analytical and numerical studies of transient and steady one-, two-, and three-dimensional heat transfer problems for a variety of boundary conditions including phase change. In addition, variational and boundary element methods are applied to heat conduction problems.

ME 711. Convection Heat Transfer. 3 credits, 3 contact hours.
Prerequisites: ME 610 and ME 616 or equivalent. Development of convective heat transfer theory: currently available methods, analytical and numerical, for predicting heat rates in forced, natural, and mixed convection in laminar and turbulent flow regimes are thoroughly studied. Studied techniques are applied to the thermal design of complex systems.

ME 712. Mechanics of Viscous Fluids. 3 credits, 3 contact hours.
Prerequisites: ME 611 and ME 616. (May be taken concurrently.) Properties and behavior of real fluids in laminar and turbulent motion. Review of tensor analysis; current mathematical and empirical laws and methods; flows in ducts; exact solutions of Navier-Stokes equations; boundary layers over surfaces and flow past bodies.

ME 713. Non-Newtonian Fluid Dynamics. 3 credits, 3 contact hours.

ME 714. Principles of Particulate Multiphase Flows. 3 credits, 3 contact hours.
Prerequisite: Courses in fluid mechanics or approval of the instructor. This course provides an introduction to the fundamental principles of mass, momentum and heat transfer in particulate multiphase flows. Theories and governing equations for distinctive responses and motions of each phase and the dynamic interactions among phases are formulated. Typical industrial applications will be illustrated.

ME 717. Selected Topics in Mechanical Engineering I. 3 credits, 3 contact hours.
Prerequisite: department approval. Given when interest develops. Topics may include advanced mechanisms, aerodynamics, analysis of ME systems, design optimization, and case studies in design.

ME 718. ST.: 3 credits, 3 contact hours.

ME 721. Thermal Stresses. 3 credits, 3 contact hours.
Prerequisites: vector analysis or ME 616 or equivalent and theory of elasticity or ME 785. Thermoelasticity; reduction of thermoeelastic problems to constant temperature equivalents; fundamentals of heat transfer; and elastic and inelastic stress analysis.

ME 725. Independent Study I. 3 credits, 3 contact hours.
Assignments of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once.

ME 726. Independent Study II. 3 credits, 3 contact hours.
Assignments of the academic advisor and course instructor are required for registration. Students working on their PhD dissertation or MS thesis cannot normally register for this course with their respective dissertation/thesis advisor. This special course covers areas of study in which one or more students may be interested but there is not sufficiently broad interest to warrant a regular course offering. Students may not register for this course more than once. Students should only register for ME 726 if they have taken ME 725 in a prior semester.

ME 727. Independent Study III. 3 credits, 3 contact hours.
Prerequisites: written permission from department chairperson plus prerequisite courses prescribed by a supervising faculty member. Areas of study in which one or more students may be interested but which is not of sufficiently broad interest to warrant a regular course offering. A maximum of two independent studies courses may be applied to a degree.

ME 735. Advanced Topics in Robotics. 3 credits, 3 contact hours.
Prerequisite: ME 625. Introduction to advanced topics and techniques in robotics. Subjects covered include differential kinematics, calibration and accuracy, trajectory control, and compliant motion control as well as an in-depth treatment of topics discussed in ME 625.
ME 736. Advanced Mechanism Design. 3 credits, 3 contact hours.
Prerequisites: ME 636 and ME 616. Advanced methods for the synthesis of mechanisms. Topics include synthesis of planar mechanisms for three, four and five positions, multiloop linkages, change of branch and order problems, and optimal synthesis of mechanisms. Synthesis of linkages for special types of motion including straight line motion, cusp points on coupler curves and adjustable mechanisms.

ME 738. Computer Aided Engineering. 3 credits, 3 contact hours.
Prerequisites: ME 635. This course covers advanced CAD and CAE tools for visual computing simulation and analysis. Topics include modeling, assembly, CAD data exchange by exporting and importing various CAD model formats, computer simulation and analysis of structure, thermal, fluid and animation of the results of analysis. Multi-physics analyses such as thermal-structure, electric-thermal-structure in MEMS and fluid-structure interactions are studied. The laboratory component involves use of most current commercial CAD/CAE software packages.

ME 752. Design of Plates and Shells. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. A study of plates and shells. Mechanical engineering design solutions for typical loading and boundary conditions through analytical and numerical methods. Plate and shell interfaces and vibration are also considered.

ME 754. Pressure Vessel Design. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. Theories in designing pressure vessels; analysis of circular plates; cylindrical and spherical shells; pressure vessel heads; pipe bends; and attachments. Consideration is also given to pressure vessel materials in fatigue and creep designs.

ME 755. Adaptive Control Systems. 3 credits, 3 contact hours.

ME 785. Theory of Deformable Solids in Mechanical Engineering I. 3 credits, 3 contact hours.
Prerequisites: ME 616 or equivalent and ME 620. Measure of strain; strain tensor; stress tensor; equilibrium equations; constitutive relations; compatibility conditions; conditions for and formulation of three-dimensional problems; and the relationship of engineering theories for beams, plates, and shells to the equations of elasticity.

ME 786. Theory of Deformable Solids in Mechanical Engineering II. 3 credits, 3 contact hours.
Prerequisite: ME 785. Solutions for problems formulated in ME 785 eigenfunction solutions; operational methods; complex variables theory; three-dimensional problems; contact problems; wave propagation; and non-linear problems.

ME 790. Doct Dissertation & Res. 0 credits, 0 contact hours.
Required of all students working toward the Doctor of Philosophy in Mechanical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester until 36 credits are reached and for 3 credits each semester thereafter.

ME 790A. Doc Dissertation & Res. 1 credit, 1 contact hour.
Co-requisite: ME 791. Approval of the dissertation advisor is required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended their dissertation proposal. The student must register in ME 790A every semester until successful dissertation defense. A written dissertation must be defended and approved by a committee of at least five members. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint PhD programs with other universities).

ME 790B. Doc Dissertation & Res. 3 credits, 3 contact hours.
Co-requisite: ME 791. Since the ME 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For PhD students who have successfully defended their dissertation proposal. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to joint programs with other universities).

ME 790C. Doc Dissertation & Res. 6 credits, 6 contact hours.
Co-requisite: ME 791. Since the ME 790A course should normally be taken instead, approvals of academic and dissertation advisors are required for registration. For PhD students who have successfully defended their dissertation proposal. Experimental and/or theoretical investigation of a relevant topic in mechanical engineering. Students enrolled in the PhD program before 2015 Fall must accumulate a minimum number of credits in Doctoral Dissertation Research and Pre-Doctoral Research (see graduate catalog for program-specific details; the same requirement may apply to some joint programs with other universities).

ME 790D. Doc Dissertation & Res. 9 credits, 3 contact hours.
ME 790E. Doc Dissertation & Res. 12 credits, 3 contact hours.
ME 790F. Doctoral Diss & Research. 15 credits, 3 contact hours.
ME 790G. Doctoral Dissertation. 18 credits, 3 contact hours.

ME 791. Graduate Seminar and Professional Presentations. 0 credits, 0 contact hours.
Regular attendance required of all students in the Mechanical Engineering PhD program. Each PhD student is required to make a 15 minute presentation on a topic related to the student's research with an additional 10 minutes to address audience questions. The seminar participants evaluate each speaker.
ME 792B. Pre-Doctoral Research. 3 credits, 3 contact hours.
Co-requisite: ME 791. Approval of the dissertation advisor is required for registration. Preliminary experimental and/or theoretical investigation of a relevant topic in mechanical engineering. For students who have passed the qualifying examination but have not defended the dissertation proposal. Permission is needed of the academic advisor as well for students who have completed the required coursework but have not passed the qualifying examination.

ME 792C. Pre-Doctoral Research. 6 credits, 6 contact hours.

ME 792D. Pre Doctoral Research. 9 credits, 3 contact hours.

ME 794. Mechanical Engineering Colloquium. 0 credits, 1 contact hour.
Prerequisites: graduate standing and major in mechanical engineering. National and international experts in mechanical engineering discuss their recent research. Required of all students enrolled in mechanical engineering graduate degree programs. Students must register in this course for at least two semesters and attend at least four lectures in each semester. All doctoral students and students with assistantships must register in this course each semester and attend regularly.