M.S. in Pharmaceutical Engineering

The master's degree is a valued professional credential, offered on a full-time or part-time basis. Applicants are expected to have a baccalaureate degree in chemical engineering or equivalent with a minimum GPA of 3.0. Students with undergraduate degrees in biology, chemistry, physics, and equivalent may also be admitted on condition that additional undergraduate courses, specified at the time of admission, be taken and successfully completed. International students must achieve a TOEFL score of at least 550 (paper-based); 213 (computer-based); 79 (internet-based). A quantitative section of GRE must be at the level approved by NCE, presently at 155.

Thirty credit hours are required for the degree. A thesis is optional.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 612</td>
<td>Kinetics of Reactions and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHE 624</td>
<td>Transport Phenomena I</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 601</td>
<td>Principles of Pharmaceutical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 603</td>
<td>Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 618</td>
<td>Principles of Pharmacokinetics and Drug Delivery</td>
<td>3</td>
</tr>
<tr>
<td>CHE 714</td>
<td>Micromechanics of Part Tech Pr</td>
<td>3</td>
</tr>
<tr>
<td>CHE 611</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 603</td>
<td>Separation Process Principles</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 602</td>
<td>Pharmaceutical Facility Design</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 604</td>
<td>Validation and Regulatory Issues in the Pharmaceutical Industry</td>
<td>3</td>
</tr>
<tr>
<td>PHEN 605</td>
<td>Pharmaceutical Packaging Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select at least one from these courses (1 course=3 credits):

- CHE 612: Kinetics of Reactions and Reactor Design
- CHE 624: Transport Phenomena I
- PHEN 601: Principles of Pharmaceutical Engineering
- PHEN 603: Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems
- PHEN 618: Principles of Pharmacokinetics and Drug Delivery
- CHE 714: Micromechanics of Part Tech Pr
- CHE 611: Thermodynamics
- CHE 603: Separation Process Principles

Select at least one from these courses (1 course=3 credits):

- CHE 612: Kinetics of Reactions and Reactor Design
- CHE 624: Transport Phenomena I
- PHEN 601: Principles of Pharmaceutical Engineering
- PHEN 603: Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems
- PHEN 618: Principles of Pharmacokinetics and Drug Delivery
- CHE 714: Micromechanics of Part Tech Pr
- CHE 611: Thermodynamics
- CHE 603: Separation Process Principles

Select any combination of three elective courses/thesis courses/project course from the following list (3 courses=9 credits):

- CHE 612: Kinetics of Reactions and Reactor Design
- CHE 624: Transport Phenomena I
- PHEN 601: Principles of Pharmaceutical Engineering
- PHEN 603: Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems
- PHEN 618: Principles of Pharmacokinetics and Drug Delivery
- CHE 714: Micromechanics of Part Tech Pr
- CHE 611: Thermodynamics
- CHE 603: Separation Process Principles

Any of the courses already listed above but not yet taken

- CHE 612: Kinetics of Reactions and Reactor Design
- CHE 624: Transport Phenomena I
- PHEN 601: Principles of Pharmaceutical Engineering
- PHEN 603: Pharmaceutical Unit Operations: Processing of Liquid and Dispersed Phase Systems
- PHEN 618: Principles of Pharmacokinetics and Drug Delivery
- CHE 714: Micromechanics of Part Tech Pr
- CHE 611: Thermodynamics
- CHE 603: Separation Process Principles

Any courses from the programs specified below:

- Pharmaceutical Engineering (PhEn)
- Chemical Engineering (ChE)
- Biomedical Engineering (BME)
- Biology (BIOL)
- Chemistry (CHEM)
- Biopharmaceutical Engineering (PhB)
- Pharmaceutical Materials Processing (PhMP)
- Pharmaceutical Systems Management
- Industrial Engineering (IE)
- Engineering Management (EM)
- Mathematics (MATH)

Project/Independent Study

Thesis

Credits

3

3

3

3

3

3

3

3

9

3

3