Electrical and Computer Engineering

Electrical engineering is a diversified and challenging profession concerned with the design, development, fabrication, and control of the electrical devices upon which our technological society so largely depends. Electrical engineers utilize their knowledge of devices and systems design in a multitude of areas. These include electronic circuits and devices, computers, energy conversion and distribution (including novel energy sources, solar, tidal, wind), control systems (robotics), electro-optics (lasers, sensors), and communication systems (radio, TV, cellular telephones).

The curriculum provides a broad education in mathematics, the physical sciences, humanities, and social sciences. Upon this foundation is built a depth of understanding in electrical engineering and related fields. In the senior year, students may emphasize an area of interest by selecting from a broad range of electives, including a systems pair in communications, control, computers, solid state, bio-electronics or microwave/optics.

The program seeks to produce an electrical engineer who can think analytically and creatively, work effectively, and communicate clearly with others. Electrical engineering graduates may enter industry in professional engineering work or pursue advanced studies in electrical engineering or a related field, such as biomedical engineering. They may also use their electrical engineering background as the basis for further study in a different field such as law or medicine.

The curriculum, as described below, is for students entering NJIT as freshmen in the Fall of 2007 or thereafter. Students entering before that date may have a different program and should consult the department to learn which curriculum applies.

The interdisciplinary profession of computer engineering has evolved over the last decades. Computer engineering professionals develop, design, and test computer systems. They understand both computer hardware and software and possess enough engineering breadth to design computer systems for a variety of applications. Economics and Internet flexibility have led to the widespread use of computer engineering technology. The career potential for graduates with this knowledge has been strong for many years. Computer engineering consists of basic electrical engineering and computer science curricula combined with a set of special courses in computer systems. Computer engineering students will have a broad engineering background combined with in-depth knowledge of computer hardware, software, and application tradeoffs, and the basic modeling techniques representing the computing process.

The core subject areas of computer engineering are discrete mathematics, fundamentals of computing, data structures, system software and software engineering, computing languages, operating systems, logic design, digital systems design, computer architecture, interfacing and communications. Students graduating from NJIT with a Bachelor of Science in Computer Engineering and a good academic record will be able to pursue further study leading to advanced degrees in computer engineering, electrical engineering, or computer science.

The curriculum, as described below, is for students entering NJIT as freshmen in the Fall of 2007 or thereafter. Students entering before that date may have a different program and should consult the department to learn which curriculum applies.

The Mission Statement

The Mission Statement of the Electrical Engineering (EE) Program is to provide EE students a rigorous learning experience and to prepare them for professional careers.

Program Educational Objectives

In order to meet the Mission of both the institution and the ECE Department, the Department and its Industry Advisory Board have been approved the following Program Educational Objectives:

1. Graduates will succeed in electrical engineering areas or other diverse fields that require analytical and/or professional skills.
2. Graduates will pursue professional development, including continuing or advanced education, relevant to their career plans.
3. Graduates will contribute to their fields or professions and society.

Electrical Engineering Program Student Outcomes

This program is accredited by the Engineering Accreditation Commission of ABET (http://abet.org) and satisfies ABET a-K Program Students Outcome:

- An ability to apply knowledge of mathematics, science, and engineering;
- An ability to design and conduct experiments, as well as to analyze and interpret data;
- An ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability;
- An ability to function on multidisciplinary teams;
- An ability to identify, formulate, and solve engineering problems;
- An understanding of professional and ethical responsibility;
- An ability to communicate effectively;
- The broad education necessary to understand the impact of engineering solutions in a global economic, environmental, and social context;
• A recognition of the need for, and an ability to engage in, life-long learning;
• A knowledge of contemporary issues;
• An ability to use the techniques, skills and modern engineering tools necessary for engineering practice

NJIT Faculty

A
Kam, Moshe, Professor
Akansu, Ali N., Professor
Ansari, Nirwan, Professor

B
Bar-Ness, Yeheskel, Distinguished Professor Emeritus

C
Carpinelli, John D., Professor
Carr, William N., Professor Emeritus
Clements, Wayne I., Associate Professor Emeritus
Cornely, Roy H., Professor Emeritus

F
Feknous, Mohammed, University Lecturer
Frank, Joseph Associate Professor Emeritus
Friedland, Bernard, Distinguished Professor

G
Ge, Hongya, Associate Professor
Grebel, Haim, Professor

H
Haddad, Richard A., Professor Emeritus
Haimovich, Alexander M., Professor
Hou, Sui-Hoi Edwin, Associate Professor
Hubbi, Walid, Associate Professor

K
Kam, Moshe, Professor
Khreishah, Abdallah, Assistant Professor
Klapper, Jacob, Professor Emeritus
Kliwer, Joerg, Associate Professor
Kuo, Marshall C., Professor Emeritus

L
Levkov, Serhiy P., University Lecturer

M
Manzhura, Oksana Yu, University Lecturer
N
Niver, Edip, Professor

R
Rojas-Cessa, Roberto, Associate Professor
Rosenstark, Solomon, Professor Emeritus

S
Savir, Jacob, Distinguished Professor
Shi, Yun-Qing, Professor
Simeone, Osvaldo, Associate Professor
Sohn, Kenneth S., Professor Emeritus
Sosnowski, Marek, Professor
Steele, Timothy W., University Lecturer

T
Tsybeskov, Leonid, Professor

W
Whitman, Gerald, Professor

Z
Zhou, Mengchu, Distinguished Professor
Ziavras, Sotirios G., Professor

Programs

• Computer Engineering - B.S. (http://catalog.njit.edu/undergraduate/newark-college-engineering/electrical-computer/computer-engineering-bs)
• Electrical Engineering - B.S. (http://catalog.njit.edu/undergraduate/newark-college-engineering/electrical-computer/electrical-engineering-bs)
• Computer Engineering Minor (http://catalog.njit.edu/undergraduate/newark-college-engineering/electrical-computer/computer-engineering-minor) (not for Electrical Engineering or Computer Science majors)

NJIT Courses

ECE 101. Introduction to Electrical and Computer Engineering. 0 credits, 1 contact hour (1;0;0).
Familiarize students with various disciplines, career opportunities and curricula in electrical and computer engineering. Invited speakers include faculty and industrial representatives.

ECE 231. Circuits and Systems I. 3 credits, 4 contact hours (4;0;0).
Prerequisites: PHYS 121 and MATH 112 or MATH 133. The basic concepts of electric circuit theory and system analysis. Topics include basic circuit elements, loop and node analysis, network theorems, sinusoidal steady-state analysis, power, resonance, mutual inductance, and ideal transformers.

ECE 232. Circuits and Systems II. 3 credits, 4 contact hours (4;0;0).
Prerequisite: ECE 231. Corequisite: MATH 222. A continuation of circuits and systems with special emphasis on transient response. Topics include Laplace transform analysis, transfer functions, convolution, Bode diagrams, and Fourier series.
ECE 251. Digital Design. 3 credits, 4 contact hours (4;0;0).
Prerequisites: PHYS 121. The design of combinational and sequential logic circuits used in digital processing systems and computers. Basic register transfer operations are covered. Topics include Boolean algebra, minimization techniques and the design of logic circuits such as adders, comparators, decoders, multiplexers, counters, arithmetic logic units, and memory systems.

ECE 252. Microprocessors. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 251. An introduction to microprocessor system organization and assembly language programming. The course covers the architecture, instruction set and assembly language of a specific microprocessor. Other topics included are memory organization, input/output interfacing, interrupt processing as well as exception processing. The problems associated with the design of a single board computer are also covered. Students receiving degree credit for CIS 453 cannot receive degree credit for ECE 352. Co-listed as COE 252.

ECE 271. Electronic Circuits I. 3 credits, 4 contact hours (4;0;0).
Prerequisite: ECE 231. The electronic devices, junction diodes, bipolar transistors and field-effect transistors, are introduced and studied based on semiconductor physics models. The study then continues with analysis and design of main digital electronic circuits (NMOS and CMOS) inverters and logic gates, MOS memory and storage circuits) and with introduction to analog electronic circuits such as simple transistor amplifiers.

ECE 291. Electrical Engineering Laboratory I. 1 credit, 3 contact hours (0;3;0).
Prerequisites: ECE 231, HSS 101. Corequisites: ECE 232. Laboratory work in the areas covered in ECE 231, ECE 232. Assembling, testing and analysis of basic analog circuits. Emphasis electronic measurement techniques, instrumentation and data analysis. Simulations of dc, ac, and transient circuit response on the personal computer.

ECE 310. Co-op Work Experience I. 0 credits, 0 contact hours (0;0;0).
Restriction: completion of the sophomore year, approval of the department, and permission of the Office of Cooperative Education and Internships. Students gain major-related work experience and reinforcement of their academic program. Work assignments facilitated and approved by the co-op office. Mandatory participation in seminars and completion of a report.

ECE 321. Random Signals and Noise. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 232 and ECE 333. Random processes occurring in electrical engineering. An introduction to probability and random variables is followed by stochastic processes and noise. Topics include auto- and cross-correlation functions, power spectral density, response of linear systems to random signals, and noise figure calculations.

ECE 333. Signals and Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 232, MATH 222. A continuation of circuits and systems. Topics include signal models, system representations and properties, convolution, Fourier transform, sampling, z-transform, and an introduction to IIR and FIR filter design.

ECE 341. Energy Conversion. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 231. Magnetic materials and their applications including the design of singly- and multiply-excited magnetic circuits and transformers, and the steady-state performance of dc and ac electromechanical energy converters.

ECE 353. Computer Organization and Architecture. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 252. Emphasizes the hardware design of computer systems. Topics include register transfer logic, central processing unit design, microprogrammation, ALU design, pipelining, vector processing, micro-coded arithmetic algorithms, I/O organization, memory organization and multiprocessing.

ECE 354. Digital Test. 2 credits, 2 contact hours (2;0;0).
Prerequisites: ECE 251 or equivalent, MATH 333 or equivalent. Covers theory and practice related to test technology. Topics include fault modeling, test generation, fault simulation, design for testability, fault diagnosis, built-in self-test, scan design, and many others. Surveys several industrial design for testability structures.

ECE 361. Electromagnetic Fields I. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 231, MATH 213 and MATH 222. Overview of vectors analysis. The study of static electric and magnetic fields, basic laws of electrostatics (Coulomb’s and Gauss’s laws), scalar electric potential, electrostatic force and energy; basic laws of magnetostatics (Biot–Savart and Ampere’s laws), magnetostatic force and energy, vector magnetic potential; fundamental meaning of capacitance, resistance and inductance in terms of electric and magnetic fields; Poisson’s and Laplace’s equation; characterization of materials (conductors, dielectrics, magnetic materials).

ECE 362. Electromagnetic Fields II. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 361. Maxwell’s equations solutions, reflection and refraction of plane waves in dielectric and conducting media, transmission lines; transients and frequency domain solutions in lossy and lossless lines, Smith chart and its applications, parallel plate and rectangular waveguides.

ECE 368. Signal Transmission. 2 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 232, ECE 251. This course is not for EE majors. Signal transmission both within and between digital systems. Topics include the telegrapher’s equations, wave propagation, lattice diagrams, transients in digital systems, crosstalk, proper termination for high-speed logic, and the transmission characteristics of various interconnecting geometries.

ECE 372. Electronic Circuits II. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 232, ECE 271. Principles of MOSFET and BJT small signal amplifiers: Q point design, input and output impedance, gain, and signal range limitations for different single stage configurations. Design of analog integrated circuits including differential amplifiers, current sources, active loads. Transistor high frequency models, Miller effect, and frequency response of multistage amplifiers. Feedback in multistage amplifiers. Design and analysis of nonlinear circuits based on comparators. Design and analysis of signal generators.
ECE 374. Electronic Device I. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 271. This course addresses electronic devices on a fundamental level. Topics include semiconductors, structure and properties of p/n junction, Schottky barrier, BJT, MOS, MOS FET, semiconductor optoelectronics.

ECE 392. Electrical Engineering Laboratory II. 2 credits, 3 contact hours (0;3;0).
Prerequisite: ECE 271, and ECE 291. Co-requisite ECE 372. Laboratory work in the areas covered in ECE 232, ECE 271 and ECE 372. Design, computer simulation, testing and performance analysis of analog and digital electronic circuits.

ECE 394. Digital Systems Lab. 1 credit, 3 contact hours (0;3;0).
Prerequisites: ECE 251, ECE 271 and ECE 291. Experiments emphasize digital design from basic electronic circuits to complex logic. Topics include switching speed, basic sequential circuits, the arithmetic/logic unit, and computer memories.

ECE 395. Microprocessor Laboratory. 2 credits, 4 contact hours (0;4;0).
Prerequisites: ECE 291, ECE 252. In this laboratory the students are expected to learn to apply their theoretical knowledge of both the hardware and software aspects of microprocessors. To attain this objective the students are required to construct a microprocessor based single board computer (SBC), with adequate interfacing capabilities to be able to perform some useful control tasks. Programming of the device is done in assembly language. Some of the experiments that follow the construction project deal with software while others deal with the problems of interfacing of microprocessors.

ECE 405. Electrical Engineering Principles. 3 credits, 3 contact hours (3;0;0).
Prerequisites: PHYS 121. (No credit for ECE students.) For non-electrical engineering majors. Topics include basic dc and ac circuits, basic electronics, an introduction to electromechanical energy conversion and control theory.

ECE 410. Co-op Work Experience II. 3 credits, 3 contact hours (0;0;3).
Prerequisites: ECE 310, approval of the department, and permission of the Office of Cooperative Education and Internships. Provides major-related work experience. Mandatory participation in seminars and completion of requirements that include a report and/or project. May count as EE or approved elective. Note: Normal grading applies to this COOP Experience.

ECE 414. Electrical and Computer Engineering Project I. 1 credit, 1 contact hour (1;0;0).
Restriction: Senior standing. Student teams prepare and submit technical proposals for the senior design (“capstone”) project to be completed the following semester in ECE 416 or ECE 417. Discussion of issues related to the engineering profession, including such topics as: intellectual property, sources of technical information, engineering codes and standards, professional organizations, professional registration. Required of all ECE students.

ECE 416. Electrical and Computer Engineering Project II. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 414. Continuation and completion of the project based on the proposal approved in ECE 414. Progress of the project is monitored by the instructor with demonstrations and presentations at given due dates of the regularly scheduled course. An oral presentation and demonstration of the project by the student team must be given and a written report submitted at the end of the course. Successful projects are approved for the presentation at the Senior Design Project Workshop in the presence of students, faculty and industry representatives.

ECE 417. Independent Study. 3 credits, 3 contact hours (0;0;3).
Prerequisites: ECE 414. Students work on various individually selected projects guided by the individual faculty or faculty and industrial mentors. There are no scheduled course meetings but the project progress is continuously monitored with meetings scheduled as needed. A formal written report is presented to the faculty advisor at the end of the course. An oral presentation of a successful project is made at the Senior Design Project Workshop in the present of students, faculty and industry representatives.

ECE 421. Digital Data Communications. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 232, MATH 333, or ECE 321. This course is not for EE majors. Covers communications basics and some topics in digital communications most germane to data communication. Topics include signal classification, correlation, spectral analysis, energy and power spectral density, white noise, signal transmission through linear systems, sampling and quantization, and principles of digital data transmission.

ECE 422. Computer Communications Networks. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 321 or MATH 333. Introduction to the fundamental concepts of computer communication networks. Topics include the OSI reference model, the physical, data link, network, and transport layers, TCP/IP, LANs (including token ring, token bus, and ethernet), ALOHA, routing and flow control.

ECE 423. Data Communications Networking Devices. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 421 or ECE 481. Provides a working knowledge of data communication networking devices, including modems, routers, multiplexers, switches, and concentrators and are used as building blocks in the implementation, modification, or optimization of data communications networks. Emphasizes device design, functionality and physical layer protocols.

ECE 424. Optical Communication Network. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 232 and either ECE 321 or MATH 333. Focuses on digital optical networks, architecture, modulation techniques, and detection noise. Related topics are wireless communication, infrared link, and CATV. Computer simulations of network systems are done with commercial software packages.

ECE 425. Wireless Communication Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 481 or ECE 421. Introduction to wireless system design and engineering. Develops an understanding and appreciation of the wireless engineering problems such as cellular layout design, resource allocation, mobility management, capacity and performance and signaling load calculations. Introduces physical layer building blockssuch as modulation, synchronization, coding, diversity, equalization, and spreading.
ECE 429. Computer Communications Lab. 2 credits, 4 contact hours (0;4;0).
Prerequisites: ECE 422. Experiments with different protocols and standards used in the TCP/IP computer communications, including Ethernet/802.3 standard, Address Resolution Protocol (ARP), Internet Protocol (IP), Transport Control Protocol (TCP), User Datagram Protocol (UDP), and others. Exercises with network measurements and virtualization tools, and configurations of some commercial routers are included.

ECE 431. Introduction to Feedback Control Systems. 3 credits, 3 contact hours (3;0;0).

ECE 432. Control Systems Elective. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 431. A continuation of the study of automatic control systems with emphasis on computer-aided design and problem solving. Topics covered include state feedback control, observers, industrial regulators, linear quadratic regulators, and the analysis of various common system nonlinearities. Implementation techniques on both analog and digital platforms will be addressed.

ECE 435. Medical Imaging Instrumentation and Data Acquisition Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 231, ECE 252 and ECE 333. Three-Dimensional medical imaging modalities including X-ray Computer Tomography, Magnetic Resonance Imaging, Single Photon Emission Computer Tomography, Positron Emission Tomography, and Ultrasound utilizes advanced highly integrated electronic sensors, fast processor-based computers, and advanced signal processing and reconstruction methods.

ECE 436. Bio Control Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 431. This course provides an introduction to dynamic and control in biological systems, with particular emphasis on engineering aspects of biological oscillators/waves. A combination of theoretical and simulation tools will be applied to analyze the qualitative and quantitative properties of selected biological systems. Feedback and control mechanisms in selected biological systems will be introduced. Real time signal acquisition and processing are also addressed.

ECE 439. Control Systems Laboratory. 2 credits, 4 contact hours (0;4;0).
Prerequisites: ECE 431. Laboratory work in the design and synthesis of control systems, closely coordinated with the control systems elective.

ECE 441. Power Electronics. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 373. Electronic devices and circuits used to energize various apparatus and systems. Topics include circuits, freewheeling diodes, thyristors, firing and commutation of silicon-controlled rectifiers, converters, dc choppers, and power supplies.

ECE 442. Power Systems Elective. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 341. Introduction to power plants and power networks. Topics include transmission line parameters, system modeling, economic operations of power systems, load flow studies, short circuit analysis, and power system stability.

ECE 443. Renewable Energy Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 231 and ECE 271. This course presents the various sources of renewable energy including wind, solar, and biomass as potential sources of energy and investigates the contribution they can make to the energy profile of the nation. The technology used to harness these resources will be presented. Discussions of economic/environment, politics and social policy are integral components of the course.

ECE 449. Power Systems Laboratory. 2 credits, 4 contact hours (0;4;0).
Prerequisites: ECE 494. Corequisite: ECE 442. Laboratory work in the design and synthesis of power systems, closely coordinated with the power systems elective.

ECE 451. Advanced Computer Architecture. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 353. Focuses on advanced concepts in computer systems design, and the interaction between hardware and software components at various levels (i.e., hardware/software codesign). Introduces common performance measures used by hardware and software designers to facilitate comparative analysis. Main topics are: advanced pipelining, good instruction sets, CISC and RISC microprocessors, introduction to parallel computing, and a brief historical survey of computer designs.

ECE 452. Advanced Computer Architecture II. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 451. Topics include memory allocation, single-instruction stream parallelism, parallelism by message passing, shared-resource systems, protection and security, stack-oriented systems, systolic array systems, and data-flow systems. Discusses the relationships between software and hardware levels of system implementation and operation.

ECE 453. Introduction to Discrete Event Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 251 or CS 251 or equivalent, and MATH 333 or ECE 321 or equivalent. Introduces logical models, timed models, and stochastic timed models of discrete event systems. Applies petri net methodology to the modeling of computer systems, flexible manufacturing systems, communication networks, and robotics. Contrasts the approaches of simulation, elementary queueing theory, and Markov processes.

ECE 457. Digital Image Processing. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 333. An introduction to the fundamental techniques for digital image processing. Covers human visual systems, image sensing and acquisition, image sampling and quantization, 1-D and 2-D systems, image enhancement, image restoration, image degradation, features extraction, and image segmentation.
ECE 459. Advanced Computer Systems Design Lab. 2 credits, 4 contact hours (0;4;0).
Prerequisites: ECE 451, ECE 495. Corequisite: ECE 452. Design laboratory component of the advanced computer systems technical track offered to COE majors in the senior year. Experiments emphasize advanced CPU design concepts, such as RISC approaches and exception handling, multiprocessor and systolic array computers, and FPGAs. Develop software programs to test the capabilities of these hardware designs.

ECE 461. Microwave and Integrated Optics. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 362. The analysis and design of microwave transistor amplifiers and oscillators using scattering parameter techniques. Topics include transmission line theory, scattering parameters, matching networks, signal flow graphs, amplifier design considerations (power gain stability, noise and bandwidth), and negative resistance oscillator design.

ECE 462. RF/Fiber Optics Systems Elective. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 362. Topics include dielectric waveguides and optical fibers, semiconductor optical sources and detectors; rf/microwave modulation and demodulation of an optical carrier; design concepts in optical transmitters and receivers; and usage of CAD software tools for rf/microwave simulations.

ECE 463. Optoelectronics. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 374. The course addresses electronic and optoelectronics device concepts. Topics include optical materials, semiconductor materials, light propagation in waveguide, solar cell, LED and modulation of light.

ECE 469. RF/Microwave and Fiber Optics Systems Laboratory. 2 credits, 4 contact hours (0;4;0).
Corequisite: ECE 462. Laboratory work in characterization of RF/microwave transmission structures and optical fibers, sources and detectors, spectral and time domain (OTDR) measurements in micro-waves and optics. Experiments in microwave and fiber optic links. Usage of CAD software tools for RF/microwave simulations.

ECE 472. Pulse Techniques. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 373. Topics in electronics including linear and non-linear operational-amplifier circuits, the frequency compensation of operational-amplifiers, higher-order active filters including switched-capacitor designs, waveform generators, multi-vibrators, timers, waveshapers, converters, and other selected topics.

ECE 475. VLSI Circuits. 3 credits, 3 contact hours (3;0;0).
Prerequisite: ECE 372. Topics include MOSFETs, their characteristics and use in analog and digital circuit design, static and dynamic circuits; memory cells; differential stages; symbolic layout of NMOS and CMOS circuits; fundamentals of silicon processing technology and associated design rules and methodology; calculation of chip performance including power, speed and area; logic arrays.

ECE 481. Digital Communications Systems. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 321. An introduction to digital communications systems and modulation and techniques, along with simulation experiments of communications systems and techniques in Matlab/Simulink. Description of AM and FM modulations, sampling and digitalization of signals, baseband and carrier-modulated digital transmission, signal detection in noise, inter-symbol interference and equalization, channel capacity, data compression techniques, error detection and correction methods.

ECE 482. Communications Systems Elective. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ECE 481. A continuation of the study of communications systems with selected topics from different areas of communications theory such as sampled-data communications, information theory and noise.

ECE 489. Communications Systems Laboratory. 2 credits, 4 contact hours (0;4;0).
Prerequisites: ECE 481. The laboratory experiments include time and frequency domain analysis of AM and FM signals, generation and detection of digitally modulated waveforms (ASK, FSK, BPSK), line coding and synchronization. Through the experiments, students learn how to assess and combat the impairments due to noise, and become familiar with instruments such as spectrum analyzers, audio analyzers and noise generators.

ECE 494. Electrical Engineering Laboratory III. 2 credits, 3 contact hours (1;2;0).
Prerequisites: ECE 341, ECE 374, ECE 392. A senior laboratory with experiments in two distinct areas: A) power and energy conversion, and B) semiconductor devices. Part A involves experiments with full size ac and dc electric motors, generators, and transformers. In part B characteristics of diodes, transistors and solar cells are measured using computer controlled instrumentation.

ECE 495. Computer Engineering Design Lab. 3 credits, 5 contact hours (1;4;0).
Prerequisites: ECE 353, ECE 394. Preparation for putting into practice the concepts learned in ECE 353. Emphasizes hardware design and debugging. Topics include combinational and sequential logic design using CAD tools, design based upon PLA/PLD devices, computer interface design using hardware and software, and an open-ended design project such as a central processing unit design.

ECE 498. Special Topics in Electrical and Computer Engineering. 3 credits, 3 contact hours (3;0;0).
The study of new and/or advanced topics in an area of electrical and computer engineering not regularly covered in any other ECE course. The precise topics to be covered in the course, along with prerequisites, will be announced in the semester prior to the offering of the course.