Civil and Environmental Engineering

Civil engineering is about the planning, design, construction and operation of facilities essential to modern life, ranging from bridges to transit systems. Civil engineers are problem solvers, meeting the challenges of community planning, water supply, structures, traffic congestion, energy needs, pollution, and infrastructure improvements. Societal needs, economic conditions and public safety are paramount in the work accomplished by civil engineers. High-tech tools such as computer aided design (CAD), geographical information systems (GIS) and 3-D computer modeling are a necessity in all areas of civil engineering. Civil engineers are sought by both private companies and public agencies for a variety of professional positions. Many work for engineering consulting firms or construction companies as design engineers, field engineers and project managers. They also join government agencies to oversee transportation, water supply, environmental protection, and resource management. Graduates are equally prepared to pursue MS and Ph.D. degrees in allied fields, as well as business, management and law degrees.

The Mission of Civil Engineering

The mission of the Department of Civil and Environmental Engineering is:

• to educate a diverse student body to be employed in the engineering profession
• to encourage research and scholarship among our faculty and students
• to promote service to the engineering profession and society

Program Educational Objectives

Our program educational objectives are reflected in the achievements of our recent alumni.

1. **Engineering Practice:** Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2. **Professional Growth:** Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, professional registration, and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3. **Service:** Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, and humanitarian endeavors.

Student Outcomes

Our student outcomes are what students are expected to know and be able to do by the time of their graduation.

• an ability to apply knowledge of mathematics, science, and engineering
• an ability to design and conduct experiments, as well as to analyze and interpret data
• an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
• an ability to function on multidisciplinary teams
• an ability to identify, formulate, and solve engineering problems
• an understanding of professional and ethical responsibility
• an ability to communicate effectively
• the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
• a recognition of the need for, and an ability to engage in life-long learning
• a knowledge of contemporary issues
• an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

This program is accredited by the Engineering Accreditation Commission of ABET, http://abet.org.

Njit Faculty

A

Adams, Matthew, Assistant Professor

Axe, Lisa B., Professor
Bagheri, Sima, Professor
Bandelt, Matthew, Assistant Professor
Boufadel, Michel, Professor

Chien, I Jy, Steven, Professor

Daniel, Janice R., Associate Professor
Dauenheimer, Edward G., Professor Emeritus
Ding, Yuan, Associate Professor
Dresnack, Robert, Professor

Esmaili, Danial, University Lecturer

Golub, Eugene B., Professor
Goncalves da Silva, Bruno, Assistant Professor
Greenfeld, Joshua S., Professor Emeritus

Hsieh, Hsin-Neng, Professor

Karaa, Fadi A., Associate Professor
Khera, Raj P., Professor Emeritus
Kimmel, Howard S., Professor Emeritus
Konon, Walter, Professor

Lee, Joyoung, Assistant Professor
Liu, Rongfang, Associate Professor

Marhaba, Taha F., Professor
Meegoda, Jay N, Professor
Milano, Geraldine, Senior University Lecturer

Olenik, Thomas J., Associate Professor

Raghu, Dorairaja, Professor Emeritus
Saadeghvaziri, Mohamad A., Professor
Saigal, Sunil, Distinguished Professor
Salek, Franklin, Professor Emeritus
Santos, Stephanie R, University Lecturer
Schuring, John, R., Professor
Spasovic, Lazar, Professor

Wecharatana, Methi, Professor

Z
Zhang, Wen, Assistant Professor

• Civil Engineering - B.S. (http://catalog.njit.edu/undergraduate/newark-college-engineering/civil-environmental/civil-engineering-bs)
• Environmental Engineering Minor (http://catalog.njit.edu/undergraduate/newark-college-engineering/civil-environmental/environmental-engineering-
 minor)
• Geosystems Minor (http://catalog.njit.edu/undergraduate/newark-college-engineering/civil-environmental/geosystems-minor)

Civil and Environmental Engineering Courses

CE 101. CE Computer Aided Design. 1 credit, 2 contact hours (0;2;0).
Co-requisite or Pre-requisite: FED 101 Introduce students to the basics of Civil Engineering computer aided design and the application of practical
engineering ideas with the linking of technology. CE CAD teaches students the use of basic tools, such as Autocad software, used in the preparation of
Civil Engineering contract documents. Autocad is a widely used computer program for generating engineering drawings.

CE 200. Surveying. 3 credits, 3 contact hours (3;0;0).
Prerequisite: MATH 111 or ENGR 101. Angle and distance measurement; leveling; topographic mapping; traverse and area computations; horizontal
and vertical curves; cross sections; triangulation; state plane coordinates; global positioning system. Emphasis on the use of the computer for solving
typical field and office problems. Lab should be taken concurrently.

CE 200A. Surveying Laboratory. 1 credit, 3 contact hours (0;3;0).
Corequisite: CE 200. Field exercises in conjunction with the classroom exercises in CE 200 utilizing classical and electronic instruments and COGO/
CAD software.

CE 210. Construction Materials and Procedures. 3 credits, 3 contact hours (3;0;0).
Prerequisites: HSS 101. Introduction to construction management organization, contracts, construction safety, engineering economics, and engineering
ethics. Studies current practices of heavy construction including soil and rock excavation productivity, and building construction materials and
procedures. Field trips to construction sites provide opportunities to directly view many of the practices.

CE 260. Civil Engineering Methods. 3 credits, 3 contact hours (2;1;0).
Prerequisite: HUM 101, CE 101, CE 200, CE 200A. Provides students with in-depth experience in computer applications in civil engineering and with
written and oral communication.

CE 307. Geometric Design for Highways. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CE 200, CE 200A. Highway design based on a study of traffic distribution, volume, and speed with consideration for the predictable future.
Analysis of elements of at-grade intersections and interchanges and the geometrics of highway design and intersection layout with advanced curve work
including compound and transition curves.

CE 311. Co-op Work Experience I. 0 credits, 0 contact hours (0;0;0).
Restriction: completion of the sophomore year, approval of the department, and permission of the Office of Cooperative Education and Internships.
Students gain major-related work experience and reinforcement of their academic program. Work assignments facilitated and approved by the co-op
office. Mandatory participation in seminars and completion of a report.

CE 320. Fluid Mechanics. 4 credits, 4 contact hours (4;0;0).
Prerequisite or Co-requisite: MECH 236 with a grade of C or better. Prerequisite: Mech 235 with a grade of C or better, Math 112 and Phys 111/111A
This course is designed to present the fundamental laws relating to the static and dynamic behavior of fluids. The emphasis is placed on applications
dealing with the flow of water and other incompressible fluids. These include flow in pipe systems and natural channels.
CE 320A. Hydraulics Laboratory. 1 credit, 3 contact hours (0;3;0).
Prerequisite or corequisite: CE 320. Explores the principles of fluid mechanics through laboratory experiments. Investigates various hydraulic phenomena with both physical and computer models. Demonstrates basic civil engineering design principles for pipe networks, open channel systems, and ground water regimes.

CE 321. Water Resources Engineering. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CE 200, CE 200A, MATH 225 or MATH 279. Training in methods of developing water supplies and the means to treat supplies for consumptive use. Covers hydrologic techniques such as surface and ground water yield, hydrograph and routing analyses, and probabilistic methods related to hydrologic studies.

CE 322. Hydraulic Engineering. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 320, CE 321. The objective is to provide the tools required to design water distribution systems, storm drains, and sanitary sewers. Examines related hydrologic and hydraulic techniques.

CE 332. Structural Analysis. 3 credits, 3 contact hours (3;0;0).
Prerequisites: MECH 237 with a grade of C or better. A working knowledge of free body diagrams, equilibrium conditions for force systems and moments. The primary objective is an understanding of the various methods of analyzing determinate and indeterminate beams, frames, and trusses encountered in practice.

CE 333. Reinforced Concrete Design. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 332. The student must have a working knowledge of structural analysis including determinate and indeterminate beams and frames. Primary objectives include the following: to acquaint the student with the properties of concrete and steel and with the behavior of reinforced concrete as a structural material; also, to develop methods for the design of reinforced concrete structural members such as beams, slabs, footings, and columns. Both ultimate strength design and working stress method will be studied.

CE 341. Soil Mechanics. 3 credits, 3 contact hours (3;0;0).
Prerequisite: MECH 237 with a grade of C or better or equivalent. Corequisite: CE 341A. A study of soil types and properties is made with the objective of developing a basic understanding of soil behavior. The methods of subsurface investigation and compaction are presented. Fundamentals pertaining to permeability, seepage, consolidation, and shear strength are introduced. Settlement analysis is also presented. Lab must be taken concurrently.

CE 341A. Soil Mechanics Laboratory. 1 credit, 3 contact hours (0;3;0).
Corequisite: CE 341. Students perform basic experiments in soil mechanics.

CE 342. Geology. 3 credits, 3 contact hours (3;0;0).
Restriction: Sophomore status. Studies science of geology with emphasis on physical geological processes. Stresses the principle of uniformity of process in the context of rock and soil formation, transformation, deformation, and mass movement. Includes aspects of historical geology and geomorphology.

CE 350. Transportation Engineering. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CE 200, CE 200A. A study of the principal modes of transportation, with emphasis on the planning, design and construction of facilities for modern transportation systems.

CE 351. Intro To Transportation System. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CE 200, CE 200A, CE 350 A study of the principal modes of transportation, with emphasis on the planning, design and construction of facilities for modern transportation systems.

CE 360. Sustainable Civil Engr Mat. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CHEM 121 or 125 and MECH 237 (with a grade of C or better) This course will provide instruction on engineering materials used in the construction of civil engineering projects. Additionally, the fundamentals of sustainability and sustainable design within the context of civil engineering will be discussed. The engineering properties of aggregates, wood, metal, portland cement concrete and asphaltic concrete and design of these materials will be covered. These materials will be used to discuss sustainability concepts and design within civil engineering.

CE 381. Geomorphology. 3 credits, 3 contact hours (3;0;0).
This is a course in geomorphology, the study of landforms and the contemporary processes that create and modify them. The course will emphasize earth surface processes and quantitative analysis of landform change. Lectures will stress geomorphic principles and two field-based problems will enable students to apply these principles to contemporary geomorphic problems in engineering and management with a focus on the natural environment.

CE 406. Remote Sensing. 3 credits, 3 contact hours (3;0;0).
Prerequisite: PHYS 234. Principles of remote sensing are covered including general concepts, data acquisition procedures, data analysis and role of remote sensing in terrain investigations for civil engineering practices.

CE 410. Construction Scheduling and Estimating. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 210. Quantity take off, cost estimate and CPM computer analysis of typical building or highway projects. A study is made of construction project organization, contract requirements and management control techniques with an introduction to computer applications.

CE 412. Construction Codes and Specifications. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CE 210. Code and specification aspects of engineered construction. Topics include professional ethics, contracts, specifications, bidding procedures, building codes such as B.O.C.A. and New Jersey Uniform Construction Code, Energy Code Provisions, construction safety, and the impact of the EPA on construction.
CE 413. Co-op Work Experience II. 3 credits, 3 contact hours (0;0;3).
Prerequisites: CE 311 or equivalent, approval of the department, and permission of the Office of Cooperative Education and Internships. Provides major-related work experience. Mandatory participation in seminars and completion of requirements including a report and/or project. Note: Normal grading applies to this COOP Experience.

CE 414. Engineered Construction. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 210, CE 332, CE 341. Design, erection, and maintenance of temporary structures and procedures used to construct an engineering project. Business practices, codes, design philosophies, construction methods, hardware, inspection, safety, and cost as they pertain to engineered construction projects.

CE 431. Construction Materials Lab. 1 credit, 3 contact hours (0;3;0).
Prerequisites: CE 210, MECH 237 with a grade of C or better, CE 210. This course provides an understanding of the basic properties of construction materials, and presents current field and laboratory standards and testing requirements for these materials. Students select a material or component assembly for testing, design a testing procedure, and present their results.

CE 432. Steel Design. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 332. A working knowledge of structural analysis including determinate and indeterminate beams and frames is essential. The development of current design procedures for structural steel elements and their use in multistory buildings, bridges, and industrial buildings.

CE 443. Foundation Design. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 341, CE 341A. Site investigation, selection of foundation types and basis for design, allowable loads, and permissible settlements of shallow and deep foundations. Computations of earth pressure and design of retaining walls.

CE 450. Urban Planning. 3 credits, 3 contact hours (3;0;0).
Prerequisite: junior engineering standing. Introduction to urban planning, its principles, techniques, and use. Topics include development of cities, planning of new towns, redevelopment of central cities, and land use and transportation planning.

CE 461. Professional Practice in CEE. 3 credits, 3 contact hours (3;0;0).
Develop an understanding of the process to become a licensed professional engineer and familiarize the students with the professional practice of engineering including codes of ethics and professional business practices and to provide an adequate background for the Fundamentals of Engineering.

CE 465. Green and Sustainable Civil Engineering. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 210 and Junior standing. Designed to teach students currently available approaches that incorporate renewable energy and sustainable development concepts in civil engineering projects. This will include various methods of planning, design, and evaluation which promote increased energy efficiency and sustainable use of materials. Cost estimating and life cycle planning will also be included. The course will encourage students to look beyond the information in the course, to come up with additional methodologies which may not currently be in use.

CE 485. Special Topics in Civil Engineering. 3 credits, 3 contact hours (3;0;0).
The study of new and/or advanced topics in an area of civil engineering not regularly covered in any other CE course. The precise topics to be covered in the course, along with prerequisites, will be announced in the semester prior to the offering of the course.

CE 490. Civil Engineering Projects. 3 credits, 3 contact hours (0;0;3).
Restriction: senior standing in civil engineering and approval of the department. Work on an individually selected project, guided by the department faculty advisor. The project may include planning, research (library or laboratory), engineering reports, statistical or analytical investigations, and designs. Any of these may follow class-inspired direction or the student may select his or her own topic. The project must be completed and professionally presented by assigned due dates for appropriate review and recording of accomplishment.

CE 491. Research Exper-Civil Engr. 3 credits, 3 contact hours (0;0;3).
Prerequisites: Junior standing, agreement of a department faculty advisor, and approval of the associate chairperson for undergraduate studies. This course provides the student with an opportunity to work on a research project under the individual guidance of a member of the department. A written report is required for course completion. Open to students with a GPA of 3.0 or higher.

CE 494. Civil Engineering Design I. 3 credits, 3 contact hours (3;0;0).
Prerequisite: CE 210, CE 260, CE 320, CE 321, CE 350, CE 341, CE 341A and senior standing in civil engineering. Simulates the submission and acceptance process normally associated with the final design phases for a civil engineering project. Familiarizes students with the preparation of sketch plats, preliminary engineering design, and a related environmental assessment. Requirements include written submittals and oral presentations in defense of the project.

CE 495. Civil Engineering Design II. 3 credits, 3 contact hours (3;0;0).
Prerequisites: CE 333, CE 432, CE 443 and CE 494. Provides students with the type of design experience they would receive if engaged in civil and environmental engineering design practice. Course will focus on one or more of these design areas: structural, geotechnical, transportation and planning, and sanitary and environmental engineering.

ENE 262. Introduction to Environmental Engineering. 3 credits, 4 contact hours (3;1;0).
Prerequisites: CHEM 126, MATH 112, and PHYS 121. To introduce students to the integrated science, engineering, design and management concepts of engineered environmental systems. The course will cover environmental regulations and standards, environmental parameters, mass balance and natural systems, water quality management, water and wastewater treatment, air pollution control, noise pollution, and solid and hazardous waste management. Background material and laboratories in the environmental sciences and management areas will be covered. Group term papers and presentations will be required.
EN 360. Water and Waste Water Engineering. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ENE 262 and junior standing. Training in the methods used for water pollution control. Topics include the chemical, physical, and biological processes that occur in waste treatment design and in receiving waters; modeling schemes to determine allowable loadings in various bodies of water; and waste treatment processes used for water pollution control.

EN 361. Solid and Hazardous Waste Engineering. 3 credits, 3 contact hours (3;0;0).
Prerequisites: ENE 262 and junior standing. Exposure to the area of air pollution control, solid waste disposal, and radioactive waste disposal. Topics include the chemistry of contaminated atmospheres; the influence on meteorological conditions of dispersion of pollutants; abatement processes used in the control of emissions; classification and nature of solid waste, and solid waste disposal techniques; sources and methods for the disposal of radioactive contaminants; and related health effects.

EN 362. Pollution Prevention. 3 credits, 3 contact hours (3;0;0).
Prerequisites: Chem 126, Math 111, and Junior Standing. This course presents pollution prevention concepts and principles, terminologies, life cycle impact approaches, and management strategies. It will also serve as a community based service learning course. The course introduces available improvement techniques for industrial pollution prevention and control and examines specific applications to industries biological, chemical, physical, and thermal techniques.

EN 485. Special Topics in Environmental Engineering. 3 credits, 3 contact hours (3;0;0).
The study of new and/or advanced topics in an area of environmental engineering not regularly covered in any other ENEcourse. The precise topics to be covered in the course, along with prerequisites, will be announced in the semester prior to the offering of the course.

EN 490. Senior Project. 3 credits, 3 contact hours (0;0;3).
EN 491. Research Experience in ENE. 3 credits, 3 contact hours (3;0;0).

MECH 234. Engineering Mechanics. 2 credits, 2 contact hours (2;0;0).
Prerequisites: PHYS 111, MATH 112. A course for industrial and mechanical engineering students in which the equilibrium of particles and rigid bodies subject to concentrated and distributed forces is studied.

MECH 235. Statics. 3 credits, 3 contact hours (3;0;0).
Prerequisites: PHYS 111, MATH 112. Available for CE students only. Provides an understanding of equilibrium of particles and rigid bodies subject to concentrated and distributed forces.

MECH 236. Dynamics. 2 credits, 2 contact hours (2;0;0).
Prerequisites: MECH 234 or MECH 235 with a grade of C or better or MECH 320 and Math 111/111A. Provides an understanding of the mathematics of the motion of particles and rigid bodies, and of the relation of forces and motion of particles.

MECH 237. Strength of Materials. 3 credits, 4 contact hours (3;1;0).
Prerequisites: MECH 234 or MECH 235 with a grade of C or better and MATH 112, PHYS111/111A. A working knowledge of statics with emphasis on force equilibrium and free body diagrams. Provides an understanding of the kinds of stress and deformation and how to determine them in a wide range of simple, practical structural problems, and an understanding of the mechanical behavior of materials under various load conditions. Lab should be taken concurrently.

MECH 320. Statics and Strength of Materials. 3 credits, 3 contact hours (3;0;0).
Prerequisites: PHYS 111, MATH 112. For chemical engineering and electrical engineering majors. Statics provides an understanding of the equilibrium of particles and rigid bodies, including simple machines, trusses, and frictional forces. Mechanics of materials covers pressure vessels, thermal stresses, torsion of shafts, stresses and deflection in beams, and column action.