M.S. in Computational Biology

Degree Requirements

A minimum of 30 credits is required for the degree, excluding bridge courses. The graduate curriculum consists of seven core courses and additional elective courses, with an optional thesis (six credits) or research project (three credits).

M.S. in Computational Biology (courses only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 635</td>
<td>Analytical Computational Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>BIOL 638</td>
<td>Computational Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 601</td>
<td>Foundations of Bioinformatics I</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select three of the following: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 637</td>
<td>Foundations of Mathematical Biology</td>
<td></td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td></td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td></td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>R120 512</td>
<td>Cell Biology: Methods & Appl</td>
<td></td>
</tr>
<tr>
<td>R120 530</td>
<td>Cell Surface Recept</td>
<td></td>
</tr>
<tr>
<td>BIOL 641</td>
<td>Systems Neuroscience</td>
<td></td>
</tr>
<tr>
<td>MATH 636</td>
<td>Systems Computational Neuroscience</td>
<td></td>
</tr>
<tr>
<td>BIOL 612</td>
<td>Comparative Animal Physiology</td>
<td></td>
</tr>
<tr>
<td>MATH 573</td>
<td>Intermediate Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 672</td>
<td>Biomathematics I: Biological Waves and Oscillations</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 30

M.S. in Computational Biology (Master's project)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 635</td>
<td>Analytical Computational Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td></td>
</tr>
<tr>
<td>BIOL 638</td>
<td>Computational Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 601</td>
<td>Foundations of Bioinformatics I</td>
<td>3</td>
</tr>
</tbody>
</table>

Master's Project

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 700</td>
<td>Master's Project (Advisor's permission is required)</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select two of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 637</td>
<td>Foundations of Mathematical Biology</td>
<td></td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
<td></td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
<td></td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Critical Thinking for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Numerical Methods for Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 630</td>
<td>Linear Algebra and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 635</td>
<td>Analytical Computational Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>MATH 663</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 615</td>
<td>Approaches to Quantitative Analysis in the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 638</td>
<td>Computational Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BNFO 601</td>
<td>Foundations of Bioinformatics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 701</td>
<td>Master's Thesis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Master's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 637</td>
<td>Foundations of Mathematical Biology</td>
</tr>
<tr>
<td>MATH 644</td>
<td>Regression Analysis Methods</td>
</tr>
<tr>
<td>MATH 699</td>
<td>Design and Analysis of Experiments</td>
</tr>
<tr>
<td>CHEM 658</td>
<td>Advanced Physical Chemistry</td>
</tr>
<tr>
<td>R120 512</td>
<td>Cell Biology: Methods & Appl</td>
</tr>
<tr>
<td>R120 530</td>
<td>Cell Surface Recept</td>
</tr>
<tr>
<td>BIOL 601</td>
<td>Computational Biology I</td>
</tr>
<tr>
<td>BIOL 641</td>
<td>Systems Neuroscience</td>
</tr>
<tr>
<td>MATH 636</td>
<td>Systems Computational Neuroscience</td>
</tr>
<tr>
<td>BIOL 612</td>
<td>Comparative Animal Physiology</td>
</tr>
<tr>
<td>MATH 573</td>
<td>Intermediate Differential Equations</td>
</tr>
<tr>
<td>MATH 672</td>
<td>Biomathematics I: Biological Waves and Oscillations</td>
</tr>
</tbody>
</table>

Total Credits 30

1 Other courses may be taken with advisor's approval. Advisor's permission is required for project.